

Temperature affects the formation of condensable gases, as well as nucleation and condensation. It has been shown to be anticorrelated with SOA yields and is one of the most important factors in SOA formation (Takekawa et al., 2003).

In this study we measure the temperature dependence of SOA-yields and particle size distributions from the reaction of ozone with the monoterpenes α-pinene and β-pinene.

Laboratory study of temperature dependence
Experiments were performed in a flow reactor connected to a scanning mobility particle sizer (SMPS) system (long DMA and UCPC):

Results

Yield as a function of organic aerosol mass at three temperatures:

Lower temperature \longrightarrow higher yield $\Delta \mathrm{T}=-20 \mathrm{~K} \Rightarrow$ Doubling of yiel
Yields are higher than reported by Takekawa et al. (2003) (chamber setup).
$\left[\begin{array}{ll}{\left[\mathrm{O}_{3}\right]:} & {[0,9-2,5 \mathrm{ppmv}]} \\ \hline\end{array}\right.$ $[\beta$-pinene]: $[1,0-2,6 \mathrm{ppmy}]$ Δ [β-pinene]: : $77-59 \mathrm{ppbv}]$
$293 \mathrm{~K} \rightarrow 283 \mathrm{~K}$
\Rightarrow higher yields
$303 \mathrm{~K} \rightarrow 293 \mathrm{~K}$
\Rightarrow no significant change

Yields are higher than reported by Hoffmann et al. (1997) (chamber setup).
Yields are calculated from the measurements
and used to fit a two-product model (Odum et al., 1996):

References

Atkinson, R. and Arey, J. 2003. Chemical Reviens (103) 12: 4605-4638 Hoffmann, T., et al. 1997. Jourral of Atmospheric Chemistry (26) 189-222 Odum, J. R., et al. 1996. Environmental Science and Technology (30) 8:2580-2585
Shechan, P. E. and Bowman, F. M. 2001. Environmental Science ec Technology (35) 11: 2129-2135
Takekawa, H., et al. 2003. Atmospheric Environment (37) 24: 3413-3424

Results

Particle size distributions as a function of temperature:

${ }^{10} \mathrm{D}_{\mathrm{p}(\mathrm{nm})}{ }^{100}$

	$\Delta \alpha$-pinene	$\Delta \beta$-pinene
283 K	$278 \mu \mathrm{~g} / \mathrm{m}^{3}$	$59 \mu \mathrm{~g} / \mathrm{m}^{3}$
293 K	$270 \mu \mathrm{~m} / \mathrm{m}^{3}$	$61 \mu \mathrm{~g} / \mathrm{m}^{3}$
303 K	$252 \mu \mathrm{~g} / \mathrm{m}^{3}$	$52 \mu \mathrm{~g} / \mathrm{m}^{3}$

Particle volume distributions as a function of temperature:

Questions and ideas

Q1: Is the calculation of Δ terpene a major source of uncertainty?
I1: Experiments with low $\left[\mathrm{O}_{3}\right] ; \Delta[$ terpene $]=\left[\mathrm{O}_{3}\right]_{0}$
Q2: Is the large surface (many and small particles) resulting in too large yields? I2: Add seed-aerosol to the system.
Q3: Are there any effects from the walls in the flow reactor?
I3: Experiments with the same amount of reacted terpene with different inlet heights.

Ideas for the future: other terpenes, CCN properties of particles partitioning coefficients of products.

Acknowledgements

The authors thank Gerhard Schuster for ideas, technical assistance and good spirits.

