
                                                                                                                                                   

                 Rationale                1

    

• The demand for eruption scenario forecast is pres-
sing.

• Volcanic systems are largely out of direct observa-
tion.

• Some of the quantities which determine volcanic pro-
cesses are uncertain.

• Taking into account these uncertainties in predictive
models can be exceedingly demanding.

• We are therefore developing the application of sto-
chastic methods to largely reduce the computational
costs.
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A practical situation:

• the random vector X = (X1, . . . , Xd) is part of the
input data of a numerical code ϕ and the random
variable Y is one relevant model output;

• the probability density function f(x) of X is assumed
to be known;

• there is a maximum number N of affordable simula-
tions.

Strategy ⇒ stochastic quantization method:

• find N values of X,
(
x(1)
1 , . . . , x(1)

d

)
, . . . ,

(
x(N)
1 , . . . , x(N)

d

)
,

and N corresponding weights,
(
w(1), . . . , w(N)

)
, with

∑N
i=1 w(i) = 1, so that the resulting discrete distribu-

tion is the “best” approximation of f(x);
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• for i = 1, . . . , N compute

y(i) = ϕ
(
x(i)
1 , . . . , x(i)

d

)

and give it the weight w(i); the resulting discre-
te distribution is an approximation of the unknown
distribution of Y .                              

Figure 1: approximation of input and output distribu-
tions. The orange arrows represent performed computa-
tions, while the blue one represents a computation often
out of reach in real situations.
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• Introduce a distance between two probability distri-
butions, in the case in which X is a scalar quantity:
if F (x) is the cumulative distribution function as-
sociated with the density f(x) and F̂ (x) is the one
associated with its discretization f̂(x), we define the
distance between f and f̂ as follows:

d(f, f̂) =
∫ xmax

xmin

∣∣∣F (x)− F̂ (x)
∣∣∣dx, (1)

where xmin and xmax are the minimum and maximum
possible values of X.         
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• The procedure consists in searching for N points
(
x(1), . . . , x(N)

)

and N corresponding weights
(
w(1), . . . , w(N)

)

that minimize the quantity d(f, f̂).
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Figure 2: the distance between the
continuous probability distribution
and the discrete one is the shaded
region area.
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• When X is a d-dimensional vector quantity, a diffe-
rent definition of distance is more appropriate.

• Let X̂ be a discrete random vector with probability
distribution f̂ , approximating a continuous random
vector X. The distance between f and f̂ can be
defined as the mean value of the error

∣∣∣X − X̂
∣∣∣ re-

sulting from the substitution of X with X̂. We thus
minimize

d(f, f̂) = E
[
|X − X̂|

]
.               
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• It can be shown that, in the case d = 1,

E
[
|X − X̂|

]
=

∫ xmax

xmin

∣∣∣F (x)− F̂ (x)
∣∣∣dx;

hence, the criterion for the multidimensional pro-
blem is a generalization of that used in the one-
dimensional case.

• d(f, f̂) is calculated through a Monte Carlo method
which involves the concept of Voronoi partitions.

• The procedure consists in searching for the discre-
te random vector X̂ that minimizes E

[
|X − X̂|

]
; the

possible values x(1), . . . , x(N) of X̂ and the corre-
sponding weights w(1), . . . , w(N) generate the discrete
approximation f̂ of the density f .                               

Figure 3: implementation of the multi-parameter input
case. The blue points are a sample of X = (X1, X2); the
orange points x(1), . . . , x(7) are the possible values of X̂,
which is a discrete approximation of X. The orange lines
define the Voronoi regions generated by the set of points
x(1), . . . , x(7): the region associated to x(i) contains the
blue points which are closer to x(i) than to any other of
the orange points.

              Testing stochastic quantization in simple cases             5

            

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

m
ea

n

real value

numerosity
20 50 100 200 500 1000 2000

MC

SQ,N = 20

          

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

st
an

da
rd

de
vi

at
io

n

numerosity
20 50 100 200 500 1000 2000

real value
MC

SQ,N = 20

          

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

95
th

pe
rc

en
ti

le

numerosity
20 50 100 200 500 1000 2000

real value
MC

SQ,N = 20

                  

• Let ϕ(X) be a known analytical function. The pro-
bability distribution of the output random variable Y

can be calculated exactly and compared with the ap-
proximations produced by SQ and by Monte Carlo
(MC) methods with variable numerosity.

• The case in the figure refers to

ϕ(X1, X2) = X2
1X2

2 .             

Figure 4: with the SQ method and only N = 20 simu-
lations, we approximate the true values at a confidence
level corresponding to N = 2000 MC simulations for
the mean or N = 200 MC simulations for the standard
deviation.
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• Application of SQ to a situation in which the output
probability distribution cannot be explicitly calcula-
ted, but quite complete statistical information about
it can be obtained through MC simulations.

• One-dimensional steady model of magma flow in a
cilindrical conduit with fixed diameter and uniform
temperature [1].

• Random input quantities: diameter D of the conduit
and total mass fraction wH20 of water.
Random output quantity: logarithm of the mass flow
rate ṁ.

Figure 5: the correspondence between the distribution
of mass flow rate found with 1000 MC simulations and
SQ method is fully satisfactory when NSQ = 20.
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CONCLUSIONS
The SQ method allows the introduction of uncertainties
in the deterministic approach without requiring excee-
ding CPU time. As a consequence, volcanic scenarios
can be estimated in the future by means of complex
deterministic models and taking into account the intrin-
sic uncertainties involved in the definition of volcanic
systems.

Merging deterministic and probabilistic approaches to forecast volcanic scenarios
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Abstract

We present the stochastic quantization (SQ) method
for the approximation of a continuous probability den-
sity function with a discrete one. This technique redu-
ces the number of numerical simulations required to get
a reasonably complete picture of the possible eruptive
conditions at a considered volcano. Finally we show the
results of a test using a one-dimensional steady model
of magma flow [1] as a benchmark.
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