Merging deterministic and probabilistic approaches to forecast volcanic scenarios

E. Peruzzo¹, L. Bisconti², M. Barsanti^{2,3}, F. Flandoli³ and P. Papale²

Abstract

We present the stochastic quantization (SQ) method for the approximation of a continuous probability density function with a discrete one. This technique reduces the number of numerical simulations required to get a reasonably complete picture of the possible eruptive conditions at a considered volcano. Finally we show the results of a test using a one-dimensional steady model of magma flow [1] as a benchmark.

- sing.
- tion.
- cesses are uncertain.
- costs.

What is stochastic quantization?

A practical situation:

- the random vector $X = (X_1, \ldots, X_d)$ is part of the input data of a numerical code φ and the random variable Y is one relevant model output;
- the probability density function f(x) of X is assumed to be known;
- there is a maximum number N of affordable simulations.

Strategy \Rightarrow stochastic quantization method:

• find N values of X,

$$\left(x_1^{(1)}, \dots, x_d^{(1)}\right), \dots, \left(x_1^{(N)}, \dots, x_d^{(N)}\right),$$

and N corresponding weights, $\left(w^{(1)},\ldots,w^{(N)}
ight)$, with $\sum_{i=1}^{N} w^{(i)} = 1$, so that the resulting discrete distribution is the "best" approximation of f(x);

• for $i = 1, \ldots, N$ compute

 $y^{(i)} = \varphi\left(x_1^{(i)}, \dots, x_d^{(i)}\right)$

and give it the weight $w^{(i)}$; the resulting discrete distribution is an approximation of the unknown distribution of Y.

out of reach in real situations.

¹ Scuola Normale Superiore, Pisa, Italy

² Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy

³ Dipartimento di Matematica Applicata, Università di Pisa, Italy

e-mail:e.peruzzo@sns.it

• Introduce a distance between two probability distributions, in the case in which X is a scalar quantity: if F(x) is the cumulative distribution function associated with the density f(x) and $\widehat{F}(x)$ is the one associated with its discretization $\hat{f}(x)$, we define the distance between f and \hat{f} as follows:

$$d(f,\hat{f}) = \int_{x_{min}}^{x_{max}} \left| F(x) - \hat{F}(x) \right| dx, \qquad (1)$$

where x_{min} and x_{max} are the minimum and maximum possible values of X.

• The procedure consists in searching for N points

$$(x^{(1)}, \ldots, x^{(N)})$$

and N corresponding weights

 $(w^{(1)}, \ldots, w^{(N)})$

that minimize the quantity $d(f, \hat{f})$.

- When X is a d-dimensional vector quantity, a different definition of distance is more appropriate.
- Let \hat{X} be a discrete random vector with probability distribution \hat{f} , approximating a continuous random vector X. The distance between f and \hat{f} can be defined as the mean value of the error $|X - \hat{X}|$ resulting from the substitution of X with \hat{X} . We thus minimize

$$d(f, \hat{f}) = \mathbb{E}\left[|X - \hat{X}|\right].$$

• It can be shown that, in the case d = 1,

$$\mathbb{E}\left[|X-\hat{X}|\right] = \int_{x_{min}}^{x_{max}} \left|F(x) - \hat{F}(x)\right| dx;$$

hence, the criterion for the multidimensional problem is a generalization of that used in the onedimensional case.

- $d(f, \hat{f})$ is calculated through a Monte Carlo method which involves the concept of Voronoi partitions.
- The procedure consists in searching for the discrete random vector \hat{X} that minimizes $\mathbb{E}\left||X - \hat{X}|\right|$; the possible values $x^{(1)}, \ldots, x^{(N)}$ of \hat{X} and the corresponding weights $w^{(1)},\ldots,w^{(N)}$ generate the discrete approximation \widehat{f} of the density f.

which is a discrete approximation of X. The orange lines define the Voronoi regions generated by the set of points $x^{(1)}, \ldots, x^{(7)}$: the region associated to $x^{(i)}$ contains the blue points which are closer to $x^{(i)}$ than to any other of the orange points.

The SQ method allows the introduction of uncertainties in the deterministic approach without requiring exceeding CPU time. As a consequence, volcanic scenarios can be estimated in the future by means of complex deterministic models and taking into account the intrinsic uncertainties involved in the definition of volcanic systems

Testing stochastic quantization in simple cases

Figure 4: with the SQ method and only N = 20 simulations, we approximate the true values at a confidence level corresponding to N = 2000 MC simulations for the mean or N = 200 MC simulations for the standard deviation.

 $\varphi(X_1, X_2) = X_1^2 X_2^2.$

CONCLUSIONS

References

[1] P. Papale, Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing, J. Geophys. Res., 106, 11043-11065, 2001

[2] S. Graf, H. Luschgy, *Foundations of quanti-*zation for probability distributions, Springer-Verlag,

