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Abstract

We present the stochastic quantization (SQ) method
for the approximation of a continuous probability den-
sity function with a discrete one. This technique redu-
ces the number of numerical simulations required to get
a reasonably complete picture of the possible eruptive
conditions at a considered volcano. Finally we show the
results of a test using a one-dimensional steady model
of magma flow [1] as a benchmark.

A practical situation:

e the random vector X = (Xq,...,Xy) is part of the
input data of a numerical code ¢ and the random
variable Y is one relevant model output;

e the probability density function f(x) of X is assumed
to be known;

e there is a maximum number N of affordable simula-
tions.

Strategy = stochastic quantization method:

e find N values of X,

(0,2 ) o (o9, a0

and N corresponding weights, (w(l),...,w(N)), with

Zf\;l w(®) = 1, so that the resulting discrete distribu-
tion is the “best” approximation of f(x);

e for:=1,..., N compute

and give it the weight w(’i); the resulting discre-
te distribution is an approximation of the unknown
distribution of Y.
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Figure 1: approximation of input and output distribu-
tions. The orange arrows represent performed computa-
tions, while the blue one represents a computation often

out of reach in real situations.

Rationale

e [ he demand for eruption scenario forecast is pres-
Volcanic systems are largely out of direct observa-
e Some of the quantities which determine volcanic pro-
Taking into account these uncertainties in predictive

models can be exceedingly demanding.

e \We are therefore developing the application of sto-
chastic methods to largely reduce the computational
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e Introduce a distance between two probability distri-
butions, in the case in which X is a scalar quantity:
if F(x) is the cumulative distribution function as-
sociated with the density f(z) and F(z) is the one
associated with its discretization f(x), we define the
distance between f and f as follows:

a(f. )= " |F(a) - F(a)|da, (1)
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The single parameter input case, d=1 3
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where x,,;, and Tmqe are the minimum and maximum
possible values of X.

The procedure consists in searching for N points
(2,2

and N corresponding weights

(D, .. )
that minimize the quantity d(f, f).

The multi-parameter input case, d>1

e WWhen X is a d-dimensional vector quantity, a diffe-
rent definition of distance is more appropriate.

e Let X be a discrete random vector with probability
distribution f, approximating a continuous random
vector X. The distance between f and f can be
defined as the mean value of the error LX — X‘ re-
sulting from the substitution of X with X. We thus
minimize

a(f,N) =E[|X - X]].
e It can be shown that, in the case d =1,
~ Imax ~
E[|X - X| =/$ " |F(2) — F(a)|da:

hence, the criterion for the multidimensional pro-
blem is a generalization of that used in the one-
dimensional case.

e d(f,f) is calculated through a Monte Carlo method
which involves the concept of VVoronoi partitions.

e [ he procedure consists in searching for the discre-
te random vector X that minimizes E [|X —X|]; the

possible values z(1) ... (V) of X and the corre-
sponding weights w(1)_ ... w) generate the discrete
approximation f of the density f.
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Figure 3: implementation of the multi-parameter input
case. The blue points are a sample of X = (X1, X5); the
orange points :c(l), e ,33(7) are the possible values of X,
which is a discrete approximation of X. The orange lines
define the VVoronoi regions generated by the set of points
(1) . 2(7): the region associated to z(¥) contains the
blue points which are closer to () than to any other of
the orange points.
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Testing stochastic quantization in simple cases S
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e Let o(X) be a known analytical function. The pro-
bability distribution of the output random variable Y
can be calculated exactly and compared with the ap-
proximations produced by SQ and by Monte Carlo
(MC) methods with variable numerosity.

e T he case in the figure refers to

(X1, X0) = X7X3.

e Application of SQ to a situation in which the output
probability distribution cannot be explicitly calcula-
ted, but quite complete statistical information about
it can be obtained through MC simulations.

e One-dimensional steady model of magma flow in a
cilindrical conduit with fixed diameter and uniform
temperature [1].

e Random input quantities: diameter D of the conduit
and total mass fraction wg,o of water.
Random output quantity: logarithm of the mass flow
rate m.

Figure 5. the correspondence between the distribution
of mass flow rate found with 1000 MC simulations and
SQ method is fully satisfactory when Ngg = 20.

CONCLUSIONS

The SQ method allows the introduction of uncertainties
in the deterministic approach without requiring excee-
ding CPU time. ASs a conseguence, volcanic scenarios
can be estimated in the future by means of complex
deterministic models and taking into account the intrin-
SiC uncertainties involved in the definition of volcanic
systems.
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Figure 4: with the SQ method and only N = 20 simu-
lations, we approximate the true values at a confidence
level corresponding to N = 2000 MC simulations for
the mean or N = 200 MC simulations for the standard
deviation.
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