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The normal potential of a level ellipsoid is described by the well known formula

where (u, β, λ) are ellipsoidal coordinates. If the normal potential is expressed in a Cartesian system then the curvature of a normal 
plumb line passing through a point P at this specific point is a function of the first and second order partial derivatives of the normal 
potential U. To determine the previous mentioned partial derivatives in a Cartesian system (X, Y, Z) we need the partial derivatives of 
U in ellipsoidal coordinates and some suitable matrix transformations. We choose the Cartesian system (X, Y, Z) such that the Z-axis
being  the Earth’s mean axis of rotation, the X-axis is the intersection of the meridian plane of Greenwich and the equator’s plane and 
the Y-axis makes the system right-handed. Then we have that

The determination of the second order partial derivatives of U in the (X, Y, Z) system require the derivation of the first order partial 
derivatives of U in ellipsoidal coordinates and the following transformation

where M1(u, β, λ) is a 6x6 matrix. The second order partial derivatives of U are more complicated functions. For the analytical 
determination of gradk also the third order partial derivatives of U in Cartesian coordinates are needed and this means far more tedious 
differentiations. Here we will describe a method to determine approximately the gradk without using the third order partial derivatives of 
the normal potential.

Suppose that P is a point above the ellipsoid with coordinates (φP, λP, hP) and we want to determine a function for the gradk. As a first 
step we introduce the following transformations

This transformation defines a local Cartesian system (x, y, h) such that the x – axis is tangent to the local parallel, the y – axis is 
tangent to the local meridian, and the h – axis is the vertical line to the ellipsoid passing through P.

The second transformation is

which defines a local Cartesian system (x1, y1, h1) which is a parallel transport of the previous one and its center is at the point P. The 
second step is to introduce a set D which is in the interior of a unit circle on the meridian plane of P which has its center at the point P
and radius ε. The equation of this circle is y1

2+h1
2=ε2 and ε is equal to one meter. If ā1(t)=(0,y1(t),h1(t)), t∈[0, to] is the 

vector equation for the segment of a plumbline passing through a known point of the set D, then for the tangent vector and the prime 
vertical of this segment of the plumbline it holds that
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Hence since the curvature of the plumbline k is defined as                                        

it is easily seen that it is possible to determine the value of the plumbline curvature at a specific point without knowing the 
vector equation of the plumbline. 

In the third step we define the following real functions on the set D

and we substitute them into the corresponding terms in the equation of the second order partials shown above. 

This gives us               and           , leading in turn into the approximation of the curvature of the plumbline in the unit circle as

where ci (i=1,2,….,12) are real numbers. Hence it is possible to determine the curvature of a plumbline passing through an arbitrary 
point Q in the set D at the specific point. While constructing this equation for the curvature of the plumbline in the unit circle we made we made 
the assumption that the values of all second order partial derivthe assumption that the values of all second order partial derivatives of the normal potential in the set D have a constant atives of the normal potential in the set D have a constant 
value which is equal with their value at the point Pvalue which is equal with their value at the point P. Since this equation is a differentiable function in the set D it is possible to 
determine its partial derivatives and hence to obtain the gradient

Finally the coordinates of gradk(P) in the global Cartesian system (X, Y, Z) are given by the following matrix formula

The above 3 x 3 matrix is invertible, therefore the coordinates of gradk(P) can be easily determined in this global frame.

Suppose that  āis = āis(t) = (Xis(t), Yis(t), Zis(t)) is a curve in the three dimensional space,      is a conservative vector field, 
and k=k(X, Y, Z) is the curvature function for     i.e. it describes the curvature for its integral curves for a specific point  (X0, Y0, Z0). 
Let kis be the curvature function for āis , P = (XP, YP, ZP) is a point lying on āis and ā=ā(t) is the equation of the plumbline of the field 
passing through P. We say that the curve āis is an isocurvature line of with āā--field strengthfield strength Ra(XP,YP,ZP):=k(XP,YP, ZP) if 
it holds that (k ° āis)(t) = k(XP,YP, ZP) .

We can now determine the isocurvature lines of the Earth’s normal gravity field passing through a point P above the ellipsoid. The 
curvature of the normal plumbline passing through the point P is equal to k(XP, YP, ZP). Due to the symmetry of the field all the plumb 
lines which pass from points with coordinates (φP, λ, hP) will have the same value of curvature. The locus of these points is a circle 
which is an isocurvature line that has the following vector equation
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Since the plumblines of the normal gravity field are plane curves (lying on a meridian plane) then the second isocurvature line is a 
plane curve and lies on the meridian plane of the point P. If we introduce the local Cartesian coordinate system (x1, y1, h1) then the 
equation of this isocurvature line in the set D will be the solution of the equation k(y1,h1) = k(P), which needless to say is a very 
complicated algebraic equation and it cannot be solved analytically. But from the initial value theorem it is possible to determine the 
direction of the isocurvature line in the set D. That is, if the sought solution is

then the direction of the isocurvature line at P is given by. 

and the next point Q1 of the isocurvature line will have coordinates

By repeating this procedure it is always possible to determine the direction of the isocurvature line at the next points. However, 
because, by doing so we do not locate the points of the isocurvature line exactly, after the n-th iteration we have to apply a small 
correction to the coordinates of the point Qn, by first determining the value of curvature at the point Qn, k(Qn) and subtracting it from 
k(P), and in a second step, since the difference k(P) - k(Qn) is very small, estimating the new coordinates of point Qn as
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The second isocurvature line is vertical to the the first 
and it has two ending points on the surface of the 
ellipsoid. The first conclusion is obvious since the first 
isocurvature line lies on a plane parallel to the equatorial 
plane and the second lies on the meridian plane of the 
point P.  For the second conclusion, let point P be 
outside of the ellipsoid and k(P) be the value of Ra. As As 
the isocurvature line approaches the equatorial the isocurvature line approaches the equatorial 
plane it intersects plumblines whose curvature near plane it intersects plumblines whose curvature near 
the ellipsoid becomes smaller and tends to zerothe ellipsoid becomes smaller and tends to zero. The 
plumbline which is on the meridian plane λ = λP and has 
the point (φ, λ) = (0, λP) as a “starting” point is a straight 
line, and hence it has curvature equal to zero. 
Furthermore, since the isocurvature line intersects since the isocurvature line intersects 
plumblines with nonplumblines with non--zero curvaturezero curvature (and the field is 
stronger as we move towards the surface of the 
ellipsoid), this means that it approaches the ellipsoid this means that it approaches the ellipsoid 
and one of the last points will be on the surface of and one of the last points will be on the surface of 
the ellipsoidthe ellipsoid. The same situation holds as we approach 
the north pole, and therefore the isocurvature line has the isocurvature line has 
the second of its ending points on the ellipsoid near the second of its ending points on the ellipsoid near 
the north polethe north pole.

Due to the symmetry of the level ellipsoid the situation is 
depicted in Figure 1. Figure 1

The line segments d1 and d2 connecting the 
two end points with the point P are called 
diameters of the isocurvature line. As the 
geometric height of  P  tends to infinity (φP
and λP remain constant), the two ending 
points approach asymptotically the equator 
and the north (or south) pole respectively. If 
the point P “reaches infinity” then the 
isocurvature line “breaks” in two pieces, one 
along the axis x' and the other along the axis 
Z (as shown in Fig. 2). The first piece is a 
straight line vertical to the ellipsoid an lies 
on the equatorial plane and the second is a 
vertical line to the ellipsoid at the north (or 
south) pole. Considering that these straight 
lines are plumblines of the normal gravity 
field we can further state the following:

•• In case of In case of RRaa = 0= 0 the isocurvature lines are also plumblines of the normal gravitthe isocurvature lines are also plumblines of the normal gravity fieldy field

•• Finite diameter length of the isocurvature line means non zero Finite diameter length of the isocurvature line means non zero curvature for the plumblines curvature for the plumblines 

•• As the curvature of the plumblines tends to zero then As the curvature of the plumblines tends to zero then dd11 and and dd22 tend to infinitytend to infinity

Since the value of the diameter d1 depends on the value of d2 , let d = 0.5(d1+d2). From the above conclusions we can further state 
that

On the meridian plane there is a connection between the curvaturOn the meridian plane there is a connection between the curvature of  the plumblines k (or Re of  the plumblines k (or Raa ) and the value of  d and it ) and the value of  d and it 

has the form has the form k = k(1/d)

Suppose that 

is a vector equation for a coordinate patch of a surface S in the three dimensional space.  

Let       be a conservative vector field and k=k(X, Y, Z) is the curvature function and P = (XP, YP, ZP) is a point on S. We say that the 
surface S is an isocurvature surface of      with āā--field strengthfield strength Ra(XP,YP,ZP):=k(XP,YP, ZP) if the following relation holds 

For the normal gravity field holds that the isocurvature surface passing through the point P is a surface of revolution. Therefore, since 
the field is symmetric, let P be on the XZ – plane. The isocurvature line which lies on the meridian plane of P is possible to have a 
local parametric representation of the form

In other words, the isocurvature surface passing through a point P the isocurvature surface passing through a point P -- due to the symmetry of the field due to the symmetry of the field –– is generated from the is generated from the 
rotation of the isocurvature curve along the Z rotation of the isocurvature curve along the Z –– axisaxis, hence a parametric representation for a coordinate patch of the isocurvature 
surface  passing through the point P in (φ, λ) coordinates has the form

In summary,

• Since we proved that there is one isocurvature surface passing through any point P above the ellipsoid, it means that there are there are 
infinite isocurvature lines passing through the point Pinfinite isocurvature lines passing through the point P, all lying on the surface S. 

• In turn, since these isocurvature lines can be thought of as covering (at least locally) the surface S, for any direction there is for any direction there is 
always one isocurvature linealways one isocurvature line. Mathematically, this means that the family of these isocurvature lines passing through P can the family of these isocurvature lines passing through P can 
be described from a 2be described from a 2ndnd order system of ordinary differential equationsorder system of ordinary differential equations. 

• In addition, since the isocurvature line on the meridian plane is the generating cuthe isocurvature line on the meridian plane is the generating curve for the isocurvature surfacerve for the isocurvature surface we define 
the isocurvature line on the meridian plane as the mother isocurvature linethe mother isocurvature line.

We have outlined a method for determining the gradient gradk of the curvature of the plumblines of the Earth’s normal gravity field at 
a point P without using the (ordinarily required) third order partial derivatives of the normal potential U. With this method extra 
derivations and inversion of complicated matrices is avoided. The hypothesis about the second partial derivatives of U was that they 
do not change in the interior of a unit circle (i.e. of radius ε = 1 m) whose center was the point of interest P. This methodology is 
useful for the determination of the isocurvature lines passing through any point P. Along these lines the ā-field strength Ra of the 
normal gravity field is constant and its value Ra(P) is equal with k(P). We proved that there are at least two isocurvature lines passing 
through a point P, one on the meridian and the other on the parallel plane of P, and hence they are perpendicular to one another. 
Both isocurvature lines represent a family of isocurvature lines as P changes its position above the ellipsoid, with only restriction that 
P is on a meridian plane. The first family are circles which lie on planes which are parallel to the equatorial plane and the second 
family are curves on the meridian plane which have two ending points on the surface of the ellipsoid. 

The second family has more interest because, as the geometric height of  the point P tends to infinity then the isocurvature line tends 
asymptotically to the x‘-axis on the equatorial plane and the Z-axis, and subsequently “breaks” into two pieces. These two pieces 
have the special property that they are plumblines of the normal gravity field and they have constant value of curvature equal to zero. 

Finally we proved that they are infinite isocurvature lines passing through any point P and they lie on a special surface which is called 
an isocurvature surface of the normal gravity field. The isocurvature lines and isocurvature surfaces are new geometric objects 
whose geometric properties may reveal new properties for the normal gravity field and thus contribute to a better understanding of the 
Earth’s normal gravity field. 
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