Determination of the gradient of curvature of the
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Introduction

The normal potential of a level ellipsoid is described by the well known formula
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where (u, B, A) are ellipsoidal coordinates. If the normal potential is expressed in a Cartesian system then the curvature of a normal
plumb line passing through a point P at this specific point is a function of the first and second order partial derivatives of the normal
potential U. To determine the previous mentioned partial derivatives in a Cartesian system (X, Y, Z) we need the partial derivatives of
U in ellipsoidal coordinates and some suitable matrix transformations. We choose the Cartesian system (X, Y, Z) such that the Z-axis
being the Earth’s mean axis of rotation, the X-axis is the intersection of the meridian plane of Greenwich and the equator’s plane and
the Y-axis makes the system right-handed. Then we have that
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The determination of the second order partial derivatives of U in the (X, Y, Z) system require the derivation of the first order partial
derivatives of U in ellipsoidal coordinates and the following transformation
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where M,(u, B, A) is a 6x6 matrix. The second order partial derivatives of U are more complicated functions. For the analytical
determination of gradk also the third order partial derivatives of U in Cartesian coordinates are needed and this means far more tedious
differentiations. Here we will describe a method to determine approximately the gradk without using the third order partial derivatives of
the normal potential.

Methodoelogy

Suppose that P is a point above the ellipsoid with coordinates (¢, Ap, hp) and we want to determine a function for the gradk. As a first
step we introduce the following transformations
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This transformation defines a local Cartesian system (x, y, h) such that the x — axis is tangent to the local parallel, the y — axis is
tangent to the local meridian, and the h — axis is the vertical line to the ellipsoid passing through P.

The second transformation is
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which defines a local Cartesian system (x,, y,, h,) which is a parallel transport of the previous one and its center is at the point P. The
second step is to introduce a set D which is in the interior of a unit circle on the meridian plane of P which has its center at the point P
and radius €. The equation of this circle is y,?+h,?=¢2 and ¢ is equal to one meter. If 4,(t)=(0,y,(t),h,(t)), te[O, t, ] is the
vector equation for the segment of a plumbline passing through a known point of the set D, then for the tangent vector and the prime
vertical of this segment of the plumbline it holds that
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Hence since the curvature of the plumbline k is defined as k() = ﬂxM dai
dt dt2 dt

it is easily seen that it is possible to determine the value of the plumbline curvature at a specific point without knowing the
vector tion of the plumbli
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In the third step we define the following real functions on the set D
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and we substitute them into the corresponding terms in the equation of the second order partials shown above.

Thisgivesus 1"« and /1"a, leading in turn into the approximation of the curvature of the plumbline in the unit circle as
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where ¢; (i=1,2,....,12) are real numbers. Hence it is possible to determine the curvature of a plumbline passing through an arbitrary
point Q in the set D at the specific point. While constructing this equation for the curvature of the plumbline in the unit circle we made
the ption that the val of all d order partial derivatives of the normal potential in the set D have a constant
value which is equal with their value at the point P. Since this equation is a differentiable function in the set D it is possible to
determine its partial derivatives and hence to obtain the gradient
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Finally the coordinates of gradk(P) in the global Cartesian system (X, Y, Z) are given by the following matrix formula
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The above 3 x 3 matrix is invertible, therefore the coordinates of gradk(P) can be easily determined in this global frame.

Isocurvature lines

Suppose that a;; = a;(t) = (X;s(t), Y;s(t), Z;s(t)) is a curve in the three dimensional space, (,? is a conservative vector field,
and k=k(X, Y, Z) is the curvature function for E i.e. it describes the curvature for its integral curves for a specific point (X, Yo, Z;).
Let k;, be the curvature function for &, , P = (Xp, Yp, Zp) is a point lying on & and 4=4(t) is the equation of the plumbline of the field
passing through P. We say that the curve &, is an isocurvature line of & with a-field strength R,(Xp,Yp,Zp):=k(Xp, Yp, Zp) if
it holds that (k o a; )(t) = k(Xp, Yp, Zp) .

We can now determine the isocurvature lines of the Earth’s normal gravity field passing through a point P above the ellipsoid. The
curvature of the normal plumbline passing through the point P is equal to k(Xp, Yp, Zp). Due to the symmetry of the field all the plumb

lines which pass from points with coordinates (¢p, A, hp) will have the same value of curvature. The locus of these points is a circle
which is an isocurvature line that has the following vector equation
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Since the plumblines of the normal gravity field are plane curves (lying on a meridian plane) then the second isocurvature line is a
plane curve and lies on the meridian plane of the point P. If we introduce the local Cartesian coordinate system (x,, y,, h,) then the
equation of this isocurvature line in the set D will be the solution of the equation k(y,, h;) = k(P), which needless to say is a very
complicated algebraic equation and it cannot be solved analytically. But from the initial value theorem it is possible to determine the
direction of the isocurvature line in the set D. That is, if the sought solution is
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then the direction of the isocurvature line at P is given by.

dagg | __ok| [k
d|, Mlp/ oMmlp

and the next point Q, of the isocurvature line will have coordinates
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By repeating this procedure it is always possible to determine the direction of the isocurvature line at the next points. However,
because, by doing so we do not locate the points of the isocurvature line exactly, after the n-th iteration we have to apply a small

correction to the coordinates of the point Q,, by first determining the value of curvature at the point Q,, k(Q,) and subtracting it from [

k(P), and in a second step, since the difference k(P) - k(Q,) is very small, estimating the new coordinates of point Q, as
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The second isocurvature line is vertical to the the first
and it has two ending points on the surface of the
ellipsoid. The first conclusion is obvious since the first
isocurvature line lies on a plane parallel to the equatorial
plane and the second lies on the meridian plane of the
point P. For the second conclusion, let point P be
outside of the ellipsoid and k(P) be the value of R,. As
the isocurvature line approaches the equatorial
plane it intersects plumblines whose curvature near
the ellipsoid becomes smaller and tends to zero. The
plumbline which is on the meridian plane A = A, and has
the point (o, A) = (0, Ap) as a “starting” point is a straight
line, and hence it has curvature equal to zero.
Furthermore, since the isocurvature line intersects
plumblines with non-zero curvature (and the field is
stronger as we move towards the surface of the
ellipsoid), this means that it approaches the ellipsoid
and one of the last points will be on the surface of
the ellipsoid. The same situation holds as we approach
the north pole, and therefore the isocurvature line has
the second of its ending points on the ellipsoid near
the north pole.
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Due to the symmetry of the level ellipsoid the situation is

depicted in Figure 1. Figure 1

Breaking of an isocurvature line

The line segments d, and d, connecting the
two end points with the point P are called
diameters of the isocurvature line. As the
geometric height of P tends to infinity (¢p
and A, remain constant), the two ending
points approach asymptotically the equator
and the north (or south) pole respectively. If
the point P ‘reaches infinity” then the
isocurvature line “breaks” in two pieces, one
along the axis x' and the other along the axis
Z (as shown in Fig. 2). The first piece is a
straight line vertical to the ellipsoid an lies
on the equatorial plane and the second is a
vertical line to the ellipsoid at the north (or
south) pole. Considering that these straight
lines are plumblines of the normal gravity

Figure 2 field we can further state the following:

«In case of R, = 0 the isocurvature lines are also plumblines of the normal gravity field
« Finite diameter length of the isocurvature line means non zero curvature for the plumblines
« As the curvature of the plumblines tends to zero then d, and d, tend to infinity

Since the value of the diameter d, depends on the value of d,, let d = 0.5(d,+d,). From the above conclusions we can further state
that

On the meridian plane there is a connection between the curvature of the plumblines k (or R, ) and the value of d and it

has the form k = k(1/d)

Isocurvature surfaces

Suppose that
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is a vector equation for a coordinate patch of a surface S in the three dimensional space.

Let E be a conservative vector field and k=k(X; Y, Z) is the curvature function and P = (Xp, Yp, Zp) is a point on S. We say that the
surface S is an isocurvature surface of & with a-field strength R,(Xp, Y p,Zp):=k(Xp, Yp, Zp) if the following relation holds
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For the normal gravity field holds that the isocurvature surface passing through the point P is a surface of revolution. Therefore, since
the field is symmetric, let P be on the XZ — plane. The isocurvature line which lies on the meridian plane of P is possible to have a
local parametric representation of the form

ai (9) = (£()0.£,))|

In other words, the isocurvature surface passing through a point P - due to the symmetry of the field — is generated from the
rotation of the isocurvature curve along the Z — axis, hence a parametric representation for a coordinate patch of the isocurvature
surface passing through the point P in (¢, A) coordinates has the form
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In summary,

« Since we proved that there is one isocurvature surface passing through any point P above the ellipsoid, it means that there are
infinite isocurvature lines passing through the point P, all lying on the surface S.

« In turn, since these isocurvature lines can be thought of as covering (at least locally) the surface S, for any direction there is
always one isocurvature line. Mathematically, this means that the family of these isocurvature lines passing through P can
be described from a 2" order system of ordinary differential equations.

« In addition, since the isocurvature line on the meridian plane is the generating curve for the isocurvature surface we define
the isocurvature line on the meridian plane as the mother isocurvature line.

Conclusions

We have outlined a method for determining the gradient gradk of the curvature of the plumblines of the Earth’s normal gravity field at
a point P without using the (ordinarily required) third order partial derivatives of the normal potential U. With this method extra
derivations and inversion of complicated matrices is avoided. The hypothesis about the second partial derivatives of U was that they
do not change in the interior of a unit circle (i.e. of radius € = 1 m) whose center was the point of interest P. This methodology is
useful for the determination of the isocurvature lines passing through any point P. Along these lines the a-field strength R, of the
normal gravity field is constant and its value R,(P) is equal with k(P). We proved that there are at least two isocurvature lines passing
through a point P, one on the meridian and the other on the parallel plane of P, and hence they are perpendicular to one another.
Both isocurvature lines represent a family of isocurvature lines as P changes its position above the ellipsoid, with only restriction that
P is on a meridian plane. The first family are circles which lie on planes which are parallel to the equatorial plane and the second
family are curves on the meridian plane which have two ending points on the surface of the ellipsoid.

The second family has more interest because, as the geometric height of the point P tends to infinity then the isocurvature line tends
asymptotically to the x“axis on the equatorial plane and the Z-axis, and subsequently “breaks” into two pieces. These two pieces
have the special property that they are plumblines of the normal gravity field and they have constant value of curvature equal to zero.

Finally we proved that they are infinite isocurvature lines passing through any point P and they lie on a special surface which is called
an isocurvature surface of the normal gravity field. The isocurvature lines and isocurvature surfaces are new geometric objects
whose geometric properties may reveal new properties for the normal gravity field and thus contribute to a better understanding of the
Earth’s normal gravity field.




