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Observationally-based model: ψ = ψdri f ter−based + εψaltim
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Figure 6. Simulated stable/unstable manifolds in the observationally-based model for two values of ε: ε = 0.1 on
the left; and ε = 1 on the right. (Upper) FTLE estimates computed in forward time relative to t = 182 days. Ridges
of intense red correspond to stable manifolds. (Middle) FTLE estimates computed in backward time relative to
t = 182 days. Ridges of intense red correspond to unstable manifolds. (Lower) Stable and unstable manifolds
computed using the direct manifold integration method relative to t = 182 days. Note that on the left all mani-
fold intersections are of the homoclinic type, while on the right both homoclinic and heteroclinic intersections of
manifolds are present.

Lobe dynamics
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150 Figure 7. Simulations of the evolution of a hetero-

clinic lobe in forward and backward time relative to
t = 182 days using the observationally-based model
with the true value of the perturbation strength, ε =
1. The boundary of the heteroclinic lobe is shown at
the times indicated in the three panels. The portion
of the boundary of the lobe that is comprised of a
segment of the unstable manifold is shown in pink;
the portion of the boundary of the lobe that is com-
prised of a segment of the stable manifold is shown
in blue. Positions of the two hyperbolic trajectories
are shown with asterisks. In the middle subplot, the
stable and unstable manifolds which form the hete-
roclinic lobe are shown by dashed blue and dashed
pink lines. Arrows on the manifolds indicate the di-
rection of attraction/repulsion.

Transport for small and large perturbation
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Figure 8. Initial (t = 182 days) and final (t = 302 days) positions of two sets of passive tracers in the
observationally-based model for two values of the perturbation: ε = 0.1 (left) and ε = 1 (right). The two sets
of tracers are color-coded. The initial positions of the two sets of tracers lie inside two circles. Note that for ε =
0.1 there is no mixing (in a coarse-grained sense) of red and blue tracers, while for ε = 1 there is strong mixing.

Conclusions
• Transport is qualitatively different for small and large perturbation to the background.
• For a small perturbation: 1) a transport barrier of the strong KAM stability type isolates

the central and eastern gyres from the western gyre; and 2) all manifold intersections are of the
homoclinic type
• For a large perturbation: 1) the transport barrier is broken; and 2) both homoclinic and het-

eroclinic intersections of manifolds are present. It is the presence of heteroclinic intersections
of manifolds that makes gyre-to-gyre-to-gyre transport possible.
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Two models of the Adriatic Sea
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Figure 2. (Upper left) Level surfaces of the drifter-derived streamfunction, which describes the mean surface
circulation in the Adriatic Sea. The thick brown line shows the smoothed boundary of the basin. Black dots at
x = 545 km show the initial positions of the trajectories that were used to produce the lower left plot. (Upper
right) Level surfaces of the analytical streamfunction. Black dots at x = 500 km show the initial positions of the
trajectories that were used to produce the lower right plot. (Lower panels) Periods of simulated trajectories, T, for
a family of trajectories with variable initial position, y0.

3 gyre geometry. Shearless trajectory
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Figure 3. (Upper panel) For the three-gyre background
steady flow, homoclinic orbits are shown in black, and
the shearless trajectory is shown in green. (Lower
panels) Plots of T (I) (left), ω (I) (middle), and ω′ (I)
(right) for trajectories lying between the two homo-
clinic trajectories for the analytically described stream-
function. I is an unperturbed trajectory label. Motion
is periodic with period 2π/ω (I). ω′ (I) is a measure of
shear.

Schematic diagram

Figure 4. (Upper) The unperturbed system, ε = 0.
Homoclinic trajectories are shown as dashed red-blue
curves. The shearless torus is shown in green. (Mid-
dle) Weak perturbation, ε < εcr. Stable/unstable man-
ifolds are shown in blue/red. All manifold intersec-
tions are of the homoclinic type. A KAM invariant torus
near the shearless trajectory is shown in green. This
structure serves as a transport barrier that: 1) prevents
heteroclinic manifold intersections from forming; and
2) isolates the western gyre from the central and east-
ern gyres. (Lower) Strong perturbation, ε > εcr. All
KAM invariant tori near shearless trajectory are bro-
ken, thereby allowing heteroclinic manifold intersec-
tions to form, which, in turn, facilitate gyre-to-gyre-to-
gyre transport.

Simulations in the analytical model
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Figure 5. Simulations for two values of ε: ε = 0.05 on
the left and ε = 0.3 on the right. (Upper plots) Poincare
sections for an analytical steady streamfunction subject
to a periodic perturbation. A KAM invariant torus is
shown in green on the upper left subplot. Note that it
serves as a transport barrier for the color-coded trajec-
tories whose initial positions are inside (red dots) and
outside (black dots) the close curve. (Lower plots) Sta-
ble (blue and light blue curves) and unstable (red and
pink curves) manifolds of hyperbolic trajectories for an
analytical steady streamfunction subject to a quasiperi-
odic perturbation.

What controls intergyre transport in a perturbed three-gyre
system?

Figure 1. Tracks of 201 surface drifters in the Adriatic Sea between 1 August 1990 and 31 July 1999. (figure adapted
from P.-M. Poulain, J. Marine Systems, 29, 2001)

Introduction
Motivated by observations of surface drifters in the Adriatic Sea (see above), transport in a

three-gyre system is studied with the aid of dynamical systems techniques. The velocity field
is assumed to be two-dimensional and incompressible, and composed of a steady three-gyre
background flow on which a time-dependent perturbation is superimposed. Two systems of
this type are considered: 1) an analytical model of the Adriatic Sea; and 2) an observationally-
based altimetry derived model of the Adriatic Sea. It is shown that a new phenomenon arises
in a three-gyre system, which is not present in a two-gyre system. Due to this phenomenon, the
three-gyre system has qualitatively different transport properties for small and large perturba-
tions to the background. For a small perturbation two of the gyres exchange no fluid with the
third gyre. When the perturbation strength exceeds a certain threshold, transport between all
three gyres occurs1.

Dynamical systems theory

• Lagrangian equations of motion

Assumptions of two-dimensionality and in-
compressibility allow one to introduce a
streamfunction,

ψ (x, y, t) , u = −∂ψ/∂y, v = ∂ψ/∂x.
The Lagrangian equations of motion are then

dx
dt = −∂ψ

∂y , dy
dt = ∂ψ

∂x .
These equations have Hamiltonian form
with the streamfunction playing the role of
the Hamiltonian ψ (x, y, t) ⇐⇒ H (p, q, t) .
The streamfunction is assumed to consist
of a steady background subject to a time-
dependent perturbation

ψ (x, y, t) = ψ0 (x, y) + ψ1 (x, y, t) .

• Action-angle variables (I, θ)
describe the unperturbed (steady) motion.

ψ0 (x, y)→ H (I){
I = 1

2π

∮
x (y, H) dy = − 1

2π

∮
y (x, H) dx

θ = ∂G
∂I with G (y, I) =

∫ y
0 x
(
y′, H

)
dy′{

İ = −∂H
∂θ = 0

θ̇ = ∂H
∂I ≡ ω (I)

=⇒
{

I (t) = const
θ (t) = ω (I) t + θ0

I is an unperturbed trajectory label. Mo-
tion is periodic with period 2π/ω (I).
ω′ (I) = dω/dI is a measure of shear. All
trajectories are regular (nonchaotic) curves.
No chaotic trajectories are present.

• Kolmogorov-Arnold-Moser
(KAM) theorem

ψ (x, y, t) = ψ0 (x, y) + εψ1 (x, y, t)

1) quasiperiodic perturbation:
ψ1 (x, y, σ1t, ..., σNt)

2) Diophantine condition:{
σi/σj, ω/σi

}
, i, j = 1, ..., N are sufficiently

irrational

3) nondegeneracy condition (Russmann):
ω (I) 6= const

=⇒ surviving tori (barriers for transport)

• Strong KAM stability near
shearless tori

∆ω ∝
(
ε
∣∣ω′∣∣)1/2

low values of shear

=⇒ small resonance widths

=⇒ resonances less likely to overlap

=⇒ surviving KAM tori

=⇒ barriers to transport
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