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Abstract

Theoretical Considerations

•	 Land − atmosphere mass exchange is linked with radiation and energy balance 
of terrestrial surfaces and affected by interplay between water supply from be-
low, surface energy input, and exchange across air boundary layer

•	 Surface temperature depression of an evaporating surface is proportional to 
the  flux enabling remote monitoring of evaporation by Infrared thermography 

•	 The objective was to quatify evaporative temperature depression which pre-
dicting spatial and temporal evaporation rates distributions based on IRT data

•	 We developed a model for evaporation induced temperature field from a patchy 
evaporative surface and compare the results with IRT data beneath the surface

•	 Several scales and dimensionless groups controlling evaporation have been 
introduced based on the mathematical model of the temperature field

•	Surface Energy Balance equation (SEB)

•	 The Fourier distribution of surface flux is linked with temperature as:

Figure 1: Definition sketch of heat and mass transfer during evaporation from a heterogeneous surface 
with nonuniform evaporation pattern from top surface.
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Experimental Setup
•	 FLIR ThermaCAM SC6000 (FLIR, MA, USA, www.flir.com) is the heart of 
experimental setup for evaporation thermography

•	 It has been equipped with QWIP detector works in the spectral range of 8 - 
9.2μm with the resolution of 640×512 pixel. NETD (Noise Equivalent Tem-
perature Difference) is less than 35mK.
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Figure 2: (a) Experimental setup for IRT imagery: 
(1) Cylindrical Sample 
(2) IR camera 
(3) Balance (32kg±0.1g) 
(4) Normal camera
(5) Ambient Data Recorders 
(6) PC for data acquisition and processing 

(b) Evaporation from surface with abrupt vertical het-
erogeneity

Figure 3: (a) Experimental setup for side view IRT 
imagery beneath an evaporative surface:
(1) Sample with transparent PIR window
(2) IR camera
(3) Balance (32kg±0.1g)
(4) Ambient conditions recorders
(5) PC for data acquisition
(6) fan

(b) IR image of side view temperature distribution

Conclusions

Results and Discussion

•	 A physically-based model for mass-energy exchanges during evaporation from 
porous media surfaces was developed

•	 Use of averaged temperature and dimensionless groups yield a practical method 
for IR estimation of spatially distributed evaporation   

•	 Prediction of thermal field beneath a surface strengthen evaporation estimation 
and accounts for inaccessible thermal information

•	 Side view IR measurements beneath an evaporative surface provides experi-
mental verification for subsurface temperature distribution

•	 The study provides a sound basis for resolving spatially-variable evaporation 
fluxes from heterogeneous surfaces at plot and field scales using IR remote 
sensing
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•	 Equation (1) maps spatially and temporally variable surface temperature distri-
bution to a corresponding evaporation rate field (Figure 4a-f)

•	 Equation (3) yields evaporation curves from different patches of the surface by 
using only averaged temperature changes (Figure 4h)

•	 Results shows excellent agreement with balance recorded data (Figure 4h)
•	 Assuming constant flux e0 in equation (2) yields T(x,z) as:

•	 Knowing (4) and averaging over the whole patch surface, e0 can be found to 
match T(z) with IR data as depicted in Figure 4g
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Figure 4: (a) - (b) Temperature distribution and evaporation rate resulted from equation (1) at t = 0. 
(c) - (d) Same results at t = 6days. (e) - (f) Same results at t = 30days. (g) Inversion of averaged form of 
equation (4) for known e0 provides excellent match with side view IR measured subsurface tempera-
ture profile (h) Comparison of evaporation curves from measured balance data (total for the column) 
and deduced from surface temperature
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•	 The physically based model (2) enables determination mass exchange fluxes 
from temperature distribution of an evaporative surface

•	 The method is simplified by using mean temperature values for evaporation 
from heterogeneous surfaces

•	 The following length scales and dimensionless groups control interactions be-
tween various ingredients in SEB equation (1)
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