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Abstract y

Different GRACE data analysis centers provide temporal varia-
tions of the Earth’s gravity field as monthly, 10-daily or weekly
mean fields. These solutions are derived independently for each
time span, i.e. no correlation between the analysed batches
is considered. Following this procedure, an increase in tempo-
ral resolution is accompanied by a loss in accuracy. To avoid
this problem, Kurtenbach et al. (2009) presented a new
approach, which takes into account the temporal correlations
of the gravity field variations thus enabling the enhancement

of the temporal resolution up to daily snapshots. The GRACE
Level-1B (L1B) instrument data processing is performed within
the framework of a Kalman filter estimation procedure. In this
contribution an improved approach is presented, which takes
into account the full temporal and spatial correlation pattern of
the expected gravity field signal. The required information in
terms of an empirical auto-covariance function is derived in this
approach from atmospheric, oceanic, and hydrological model
data.

The Earth’s temporal gravity field as linear dynamic system

Observation model

Analysing GRACE observations leads
to a system of observation equations

Atxt = yt + vt,

with the design matrix At, the vector
of unknowns xt, the observations yt

and the noise vector vt ∼ N (0, R)
Least squares adjustment leads to a system of normal equa-
tions

Ntxt = nt,

which can be solved separately for each epoch t:

x̂t = N−1
t nt.

Process model
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Assuming that the gravity field
parameters cannot change within
an arbitrary range, the solution xt

on the current day t can be pre-
dicted from the previous at t − 1
according to

xt+1 = Bxt + w ,

with the dynamic of the process B and the prediction noise
vector w ∼ N (0, Q). Hereby, a stationary, first order Markov
process is implicitely assumed. In the following, two different
process models, (M1) and (M2), are presented and compared.
dummy text to fill the line

Combining observation model and process model – the Kalman filter and smoother

The common tool to combine the information from observa-
tions yt = Atxt, here from GRACE, and from a process model
xt+1 = Bxt is the Kalman filter, which provides an optimal
weighting of both in a least-squares sense.
Because of the postprocessing analysis of the GRACE obser-
vations, not only a filter but also a fixed-interval smoother,
here the computational efficient RTS-smoother (Rauch et
al., 1965), is applied to use all observations in the given inter-
val t ∈ [0, . . . , T ] when estimating the state at epoch t.

Prediction

x̂−t+1 = Bx̂+
t

Σ−t+1 = BΣ+
t BT + Q Update

Σ+
t =

((
Σ−t

)−1
+ Nt

)−1

x̂+
t = x̂−t + Σ+

t

(
nt −Nt x̂

−
t

)
Initial values for x̂+

0 and Σ+
0

M1 – Random walkq

Kurtenbach et al. (2009) used the simple assumption for
the process dynamic

B = I,

where the prediction error can be modeled as covariance matrix
of the first differences of the considered dynamic process:

Q = C {(xt+1 − xt)} .

Instead of the isotropic covariance function used by Kurten-
bach et al. (2009), in this study a full covariance matrix Q
of the prediction error is derived from geophysical models.

M2 – Least squares prediction

The full correlation pattern between two states of a stationary,
first order Markov process can be described by

C
{(

xt+1

xt

)}
=

(
Σ ΣT

∆

Σ∆ Σ

)

According to Moritz (1980) a linear least-squares predictor
x̂t+1 = Bxt can be found as

B = Σ∆Σ−1

with the covariance matrix of the prediction noise w:

Q = Σ−Σ∆Σ−1ΣT
∆.

Simulation study

Process dynamic

Process dynamic B and process noise Q

I for M1 (random walk):
empirical auto-covariance
C {xt+1 − xt, xt+1 − xt}

I for M2 (least squares prediction):
empirical auto-covariance Σ = C {xt, xt}
and cross-covariance Σ∆ = C {xt+1, xt}

from AOH of 01/1976 to 12/2006.

Geophysical models

Daily mass variations of

Atmosphere from Aod1B
Ocean from Aod1B
Hydrology from Wghm
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GRACE observationsy

Simulate GRACE observations

I orbits,

I K-band ranges, and

I accelerometer

for 01/2007 to 12/2007.

Build normal equations

Ntxt = nt

(degree/order 40) for each day.

Run process xt+1 = Bxt + w
with random prediction
noise w ∼ N (0, Q)
for T = 1000 days

Kalman filter/smoother

x̂+
0 = AOH(t0)

P+
0 = Σ

Simulate dynamic process

Figure: Progress of exemplary coefficients (c 7,1, s 13,3, and c 35,10)

(a) M1 – Random walk
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(b) M2 – Least squares prediction
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Figure: Evaluate states xt at point
r = (−60, 0) in the amazon basin
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Figure: Evaluate states xt at point
r = (−0,−50) in the south atlantic
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Figure: Trace of C {xt} for M1 and M2
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The prediction accuracy tr [C {xt}]
of M1 exceeds all bounds, whereas
M2 represents a steady state pro-
cess when P+

0 = Σ.

Analysis of simulated GRACE observations

Figure: Evaluate states xt at amazon (left) and south atlantic (right)

(a) RMS: M1 = 1.871, M2 = 0.790
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(b) RMS: M1 = 2.918, M2 = 1.861
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Figure: Predicted state x̂−t and updated state x̂+
t for M2
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The loss of information by model
simplification from AOH to B is
small. The chosen process noise Q
gives good results as the addition of
GRACE observations leads to a bet-
ter fitting to the reference signal.

Figure: Exemplary contribution of observations to estimated state
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The Kalman filter weights observa-
tions and underlying process model.
The contribution of the observa-
tions to the daily estimate in per
cent is shown for each potential co-
efficient for an arbitrary day.

IGG’s new GRACE gravity field release ITG-Grace2010
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The presented approach M2 was used to derive daily solutions of degree/order 40 in the
current GRACE gravity field release ITG-Grace-2010 of the IGG at University of Bonn. These
daily solutions were also used as an improved dealiasing product when deriving the monthly
solutions. For further information see

http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
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