

Abstract

A millimeter-wavelength planetary atmospheric simulator and measurement system have been developed at the Georgia Tech Planetary Atmospheres Laboratory to accurately measure the propagation properties of gases under simulated planetary atmospheric conditions. The measurement system operates in the 2-4 millimeter-wavelength range and withstands up to 3 bars of pressure. Over 1000 laboratory measurements of the 2-4 millimeter-wavelength opacity of ammonia have been made under simulated Jovian atmospheric conditions using the new laboratory system. These laboratory measurements were made of various gas mixtures of hydrogen (\approx 77.5-85.5%), helium (\approx 12.5-13.5%), and ammonia (1-10%) at pressures between 1 bar and 3 bars and temperatures between 200 K and 300 K. Laboratory measurements were also made of the opacity of pure ammonia at pressures between 50 mbar and 1 bar and temperatures between 200K and 300K. Using these measurements, a new model is being developed to accurately characterize the absorption of ammonia in the 2-4 millimeter-wavelength region under Jovian conditions.

Measurement Theory

The reduction in the quality factor (Q) of a resonant mode of a resonator in the presence of a lowloss gas is used to measure the absorption of the gas (see, e.g., [1]). Q is defined as ([2])

$$Q = \frac{2\pi f_0 \times \text{Energy Stored}}{\text{Average Power Loss}}$$

where f_0 is the frequency of the resonance. The absorption at a particular frequency is computed as given below by measuring the Q of the resonator in the presence of the lossy gas (NH_3 with H_2) and He) and the reference gas (Ar), and the straight-through transmissivities at that frequency.

Example of a resonance measured with gas, reference gas, and vacuum conditions

Ammonia Absorption in the Millimeter-Wavelength Region

Ammonia is one of the most predominant millimeter-wavelength absorbers in the Jovian planets, due to the presence of a series of inversion lines around 12.5 cm, several strong rotational lines in the submillimeter, and a strong roto-vibrational line at 2.16 mm. The opacity from gaseous ammonia in the Jovian planets should be accurately known before the potential effects of other absorbing constituents can be assessed. Ammonia absorption lines in the 0.3-1200 GHz range shown here strongly contribute to the 2-4 millimeter-wavelength absorption, although rotational lines at higher frequencies also contribute to the continuum opacity in the millimeter-wavelegnth.

Ammonia line intensities in the 0.3-1200 GHz [3]

The 2-4 Millimeter-Wavelength Opacity of Ammonia

Kiruthika Devaraj and Paul G. Steffes

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Measurement System

The measurement system consists of the following subsystems.

- The planetary atmospheric simulator controls and monitors the environment experienced by the measurement system. The temperature, pressure, and gas concentration are carefully controlled to simulate the desired planetary conditions. The simulator consists of
- Glass pressure vessel enclosing the Fabry-Perot resonator capable of handling up to 3 bars
- Pressure gauges, temperature gauge, vacuum pump, and various gas bottles
- Millimeter-wavelength measurement system consists of two subsystems: the W-band system operates in 3-4 mm-wavelength range and the F-band system operates in 2-3 mm-wavelength range.
- Swept signal generator (HP 83650B) and frequency tripler/active multiplier chain
- A near-confocal Fabry-Perot resonator with high Q and low losses
- Harmonic mixers, local oscillator, and a spectrum analyzer (HP 8564E)
- Data handling subsystem consists of a computer connected to the spectrum analyzer, swept signal generator, and CW signal generator via a general purpose interface bus. The instruments are controlled via Matlab[®] and the Standard Commands for Programmable Instruments (SCPI).

Glass pressure vessel enclosing the resonator

Block diagram of the pressure vessel and resonator

System Sensitivity

The sensitivity of the system directly depends on the Q of the resonator. The effective path length (EPL) is defined as [4]

$$\mathsf{EPL} = \frac{Q\lambda}{2\pi}$$

where λ is the wavelength of the resonance.

Contact information: Kiruthika Devaraj, Email: *kdevaraj3@mail.gatech.edu*; Acknowledgments: This work is supported by the NASA Planetary Atmospheres Program under Grant NNG06GF34G.

Jupiter brightness temperature (NH_3 concentration = 800 ppm)

143

144

136

[1] Hanley, T. R. and Steffes, P. G. Radio Sci. 42(RS6010) (2007) [2] Matthaei, G. L., Young, L., and Jones, E. Microwave filters, impedance matching networks and coupling structures. McGraw-Hill, New York, (1980).

[3] Yu, S. and Droiun, B. private communication, (2010). [4] Valkenburg, E. P. and Derr, V. E. Proc. IEEE 54, 493–498 (1966)

[10] Hanley, T. R., Steffes, P. G., and Karpowicz, B. M. Icarus 202, 316-335 (2009)

[8] Joiner, J. and Steffes, P. G. J. Geophys. Res. 96, 17,463–17,470 (1991). [9] Mohammed, P. N. and Steffes, P. G. J. Geophys. Res. 109(RS6010) (2004).

^[5] Shimizu, F. J. Chem. Phys. 51, 2754–2755 (1969) [6] Berge, G. L. and Gulkis, S. In Jupiter: Studies of the Interior, Atmosphere, Magnetosphere, and Satellites, Gehrels, T., editor, 621–692. Univ. of Arizona Press, Tuscon, AZ (1976) [7] Spilker, T. R. Laboratory measurements of the microwave absorptivity and refractivity spectra of gas mixtures applicable to giant planet atmospheres. PhD dissertation, Stanford University, CA, (1990).

^[11] Ben-Reuven, A. Phys. Rev. 145, 7–22 (1966). [12] Pickett, H. M., Poynter, R. L., Cohen, E. A., Delitsky, M. L., Pearson, J. C., and Müller, H. S. P. J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).