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Introduction to Nambu Formalism

Here we propose a Nambu formalism for Boussinesq 3D (also 2D in the
submitted paper) and Magnetohydrodynamics (MHD)
To define the Nambu formalism consider, following [1], a triplet of dy-
namical variables r = (x, y, z) that spans a 3D phase space. Then
introduce two functions H and G of (x, y, z), where H is the Hamil-
tonian of the system and G a Casimir. After, we have for an arbitrary
function F = F (x, y, z) :

dF

dt
=

∂(F,H,G)

∂(x, y, z)
≡ ∇F · (∇H ×∇G) = [F,H,G] (1)

The term on the right side of equation (1) is called Nambu bracket
(NB).
We call Nambu brackets of first kind (NB I) the NBs (1) or sums of
NBs which are related to different triplets (xk, yk, zk), k = 1, . . . , N ,
that involve the same conserved quantities H and G [1]:

dF

dt
=
∑

k

∂(F,H,G)

∂(xk, yk, zk)
=
∑

k

[F,H,G]k (2)

The sums of NBs that involve different conserved or constitutive quan-
tities (Hi, Gi), i, . . . ,M are called the Nambu brackets of second kind
(NB II) [1]:

dF

dt
=
∑

i

∂(F,Hi, Gi)

∂(x, y, z)
=
∑

i

[F,Hi, Gi] (3)

Like in [2] we call the constitutive quantities those ones which form
the basis of construction of Nambu brackets but are not necessarily the
constants of motion.

Boussinesq aproximation in 3D

The Boussinesq approximation is used in the study of buoyancy-driven
flows. It states that sufficiently small density ρ deviations from a ref-
erence density ρo can be neglected, except where they appear in terms
which include the acceleration due to gravity. The governing equations
under this aproximation are:

∂v

∂t
= −∇$ + b−wa × v (4)

∇ · v = 0 (5)
∂b

∂t
= −v · ∇b (6)

Here, v and b = −g(ρ− ρo)/ρo are the velocity and buoyancy respec-
tively; b = bk where k is the unit vector in the positive z direction,
oppositely to the direction of gravity aceleration of magnitude g ; −∇$
includes the conservative forces and the kinematic units (ρ = 1) are
assumed; wa = ∇× v+ 2Ω is the total (absolute) vorticity in a refer-
ence frame rotating with constant angular velocity Ω.
We propose the following NB II’s formalism:

dF{v, b}

dt
= [F ,H,G]v,v,v + [F ,H,L]b,v,b (7)

[F ,H,G]v,v,v =

∫

d3x

{

δF

δv

(

δH

δv
×

δG

δv

)}

(8)

[F ,H,L]b,v,b =

∫

d3x

{

δH

δb
∇

(

b
δF

δv

δL

δb

)

−
δF

δb
∇

(

b
δH

δv

δL

δb

)}

(9)
+cyc(F ,H,L)

where we use the 3D energy H, 3D kinetic helicity in a rotating frame,
G, [3, 4] and global bouyancy L

H =

∫

d3x

{

v2

2
− bz

}

G =
1

2

∫

d3x {(∇× v + 4Ω) · v}

L =

∫

d3xb

Magnetohydrodynamics (MHD)

MHD studies the electrically conducting fluids. Important examples
are plasmas and liquid metals. Here we treat only the ideal case where
the fluid has small resistivity and the effect of the electric field is ne-
glected. To this approximation the governing equations are the momen-
tum equation, the continuity equation (incompressibility is assumed)
and the pre-Maxwell equations (displacement current is neglected):

∂v

∂t
= −(∇× v)× v −∇

(

p

ρo
+
v2

2

)

+
1

ρoµ
(∇×B)×B (10)

∂B

∂t
= ∇× (v ×B) (11)

∇ · v = 0 (12)

∇ ·B = 0 (13)

Here ρo is the constant density and µ the magnetic permeability (as-
sumed constant). We construct a NB I formalism:

dF{v,A}

dt
= [F ,H,G]v,v,A (14)

[F ,H,G]v,v,A =

∫

d3x

{

1

ρo

δF

δv
·

(

δH

δv
×

δG

δA

)}

+ cyc(F ,H,G)

(15)
where A is the vector potential (B = ∇ × A). We make use of the
energy H and the cross-helicity G [5]:

H =

∫

d3x

{

ρov
2

2
+
B2

2µ

}

G =

∫

d3xv ·B

Also, we construct a NB II formalism:

dF{v,A}

dt
= [F ,H,K]v,v,v + [F ,H,L]A,v,A (16)

[F ,H,K]v,v,v =

∫

d3x

{

1

ρo

δF

δv
·

(

δH

δv
×

δK

δv

)}

(17)

[F ,H,L]A,v,A =

∫

d3x

{

1

ρo

δF

δv
·

(

δH

δA
×

δL

δA

)}

+ cyc(F ,H,L)

(18)
We use as constitutive quantities the kinetic helicity K and the
magnetic-field helicity L [5]:

K =
1

2

∫

d3xv ·w

L =

∫

d3xA ·B

Here w = ∇× v is the vorticity.
A feature of the NB II is the explicit separation of the terms in the
equations onto a kinetic part [. . .]v,v,v and a magnetic one [. . .]A,v,A.
It is clear that after taking the limit B → 0 the governing equations
describe the completely incompressible fluids and also in this limit L →
0, whereas H reduces to the kinetic energy. This observation and also
the fact that the NB [. . .]A,v,A has two functional derivatives with
respect to A show that this magnetic bracket vanishes identicaly in
this limit case. This shows directly that the kinetic helicity is conserved
when the Ampere force in (10) vanishes, as should be.
So even when the kinetic helicity is not conserved the formalism of NB
II provides it a non-trivial physical role.

We see that in the limit B → 0.the magnetic NB II vanishes and the
helicity becomes a conserved quantity. Also we see that in this limit
the NB II becomes a NB I whereas the NB I in equation (14) becomes
a Poisson bracket (PB) where the corresponding PB is:

[F ,H]v,v =

∫

d3x

{

1

ρo
w·

(

δF

δv
×

δH

δv

)}

(19)

Schematically:

As B → 0

[. . .]v,v,A → [. . .]v,v
[. . .]v,v,v + [. . .]A,v,A, → [. . .]v,v,v

The same result holds for Boussinesq 2D in the limit b → 0,
this suggests that there is a relation between the number of the func-
tional derivatives in the NBs and the appeareance of constitutive ele-
ments in Nambu brackets.

Conclusions

We extended Nambu formalism onto 3D/2D Boussinesq fluids and
also onto an ideal MHD case.
Two different methods for constructing Nambu brackets have been
used. The first one uses the energy integral and also other existing
invariants (constants of fluid motion) for such a construction. This
construction was named the Nambu bracket of first kind (NB I). The
second method uses the energy integral along with non-conservative
quantities, like kinetic helicity (or enstrophy for Boussinesq 2D-
equations), as constitutive elements for bracket construction. This is
the so called Nambu brackets of second kind (NB II).

NBII

⇓

NBI

⇓

PB

A hierarchical relationship between NB I, NB II and a corresponding
Poisson bracket (PB) is established, with regards to the limit and B →
0 (for Boussinesq 2D-equations b → 0.
Under this limit, constitutive elements in NB II become conserved
quantities and therefore NB II reduces to NB I of the simplified (limit)
problem, whereas in NB I all invariants of motion except of the energy,
disappear and NB I reduces to PB.
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