Accounting for non-linear chemistry of shipping plumes in the GEOS-Chem global chemistry transport model

TU e Technische Universiteit Eindhoven University of Technology

Introduction

Current chemistry transport models (CTMs) generally apply instantaneous mixing of shipping emissions over the model grid cells. By instantly diluting the emissions, effects of non-linear, in-plume chemistry are neglected. This leads to overestimation of NO_v concentrations and ozone production over the oceans. In this study, we adapted a Gaussian plume dispersion model with chemistry (PARANOX, Meijer et al. [1997]), to explicitly simulate NO, decay and net ozone production during the early stages of plume dispersion and implemented it using a look-up table (LUT) in a global CTM (GEOS-Chem).

Goal

Our main goal is to achieve a meaningful comparison between simulated NO concentrations and observed tropospheric NO₂ columns from satellite sensors over a number of distinct shipping lanes, which can be seen for the Indian Ocean in Figure 1. By comparing observed with accurately simulated NO₂ columns we can provide top-down constraints on NO, shipping emissions inventories. By taking non-linear, in-plume chemistry into account, we can also improve ozone simulations over the oceans.

Figure 1: OMI tropospheric NO, columns averaged over March - April - May 2005-2006 on 0.1° by 0.1° grid cells, clearly showing 6 ship tracks. Land masses have been greyed-out. Only observations with an estimated cloud radiance fraction less than 0.5 have been used.

G.C.M. (Geert) Vinken¹, K.F. (Folkert) Boersma^{1,2}, E.W. (Ernst) Meijer³, D.J. (Daniel) Jacob⁴ ¹ Eindhoven University of Technology, Eindhoven, The Netherlands

² KNMI, De Bilt, The Netherlands ³ TNO, Utrecht, The Netherlands ⁴ Harvard University, Cambridge MA, USA

C. Approach

In order to account for the effects of in-plume chemistry in the global GEOS-Chem CTM, we ran PARANOX and constructed a look-up table (LUT). This LUT contains the fraction of NO_v remaining and the integrated net ozone production 5 hours after initial release and will be used to preprocess the emissions before release in GEOS-Chem. Figure 2 illustrates the concept of our approach.

Figure 2: Concept of new approach of handling shipping NO, emissions in GEOS-Chem.

After performing a sensitivity study, we found that the fraction of NO remaining and the integrated net ozone production are a function of 7 important environmental parameters in the marine boundary layer: temperature, O₃ concentration, NO₂ concentration, the solar elevation angle at the time of initial and actual release, and photolysis rate constants for NO₂ and O(1 D).

D. Results

Figure 3 shows that GEOS-Chem simulations with our new approach (SHIP) result in NO_v concentrations that agree best with observations from the PEM-West B campaign.

Figure 3: Comparison of O₃ and NO₅ simulations and observations for the PEM-West B campaign (7 Februari till 14 March 1994). All simulations are for the year 2005, NOSHIP represents a simulation with no ship emissions, ID represesents instantly diluting ship NO emissions and SHIP represents simulations with our preprocessed emissions.

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

