

The Accommodation Coefficient of Water Molecules on Ice and its Role for Cirrus Clouds

J. Skrotzki ^{1,2}, P. Connolly ³, M. Niemand ², H. Saathoff ², O. Möhler ², V. Ebert ^{1,4,5}, T. Leisner ²

¹ Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany

² Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

³ School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

⁴ Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

⁵ Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany

I. MOTIVATION

One of the parameters governing the growth of ice crystals in cirrus clouds is the **accommodation coefficient of water molecules on ice** α . α describes the sticking probability

of water molecules colliding with the surface of an ice particle. It is relevant for the ice growth in the kinetic regime, i.e. for sub-micron ice crystals.

However, the magnitude of α is still unclear. Experimental results vary between unity and values below 0.01 [Haynes *et al.*, 1992].

Model calculations suggest that values for α between 0.1 and 1 do not have a significant impact on ice growth in cirrus clouds. Lower values however could explain the observation of unexpectedly high ice number concentrations and supersaturations within cirrus clouds [Gierens *et* al., 2003; Lohmann *et al.*, 2008].

II. THEORY OF ICE GROWTH

For **spherical ice crystals**, the mass increase per time can be described by the following formula [Pruppacher and Klett, 1997]:

$$\frac{dm}{dt} = \frac{4\pi r (S_{ice} - 1)}{\frac{RT}{e_{sat, i} D_v^* M_w}} + LH$$

where *r* is the ice particle radius, S_{ice} the saturation ratio, and $e_{sat,i}$ the saturation vapor pressure with respect to ice. *R*, *T*, and M_w are the gas constant, absolute temperature, and molar weight of water, respectively. *LH* describes the growth-impeding effect of the latent heat of deposition.

The **accommodation coefficient** α enters in the modified diffusivity of water vapor in air

$$D_{v}^{*} = \frac{D_{v}}{\frac{r}{r+\Delta_{v}} + \frac{D_{v}}{r\alpha} \left(\frac{2\pi M_{w}}{RT}\right)^{1/2}},$$

where Δ_v is the vapor jump distance.

III. AIDA CIRRUS EXPERIMENTS

Dedicated experiments examining the ice crystal growth for **deposition nucleation** in the **temperature range from 190 K to 230 K** were carried out at the cloud simulation chamber AIDA [Möhler *et al.*, 2003].

As aerosols, hematite particles and graphitespark generator (GSG) soot were used.

IV. MODELING

Two models are used to derive the accommodation coefficient α from experimental data:

 The Aerosol-Cloud-Precipitation Interaction Model (ACPIM) [Connolly et al., 2009]

 The Simple Ice Growth Model for determining Alpha (SIGMA)

Pressure Temperature S_{ice} Ice number conc.

V. UNCERTAINTY ESTIMATE

Accuracies of the experimental data sets used for a Monte Carlo (MC) uncertainty analysis:

Temperature dependent values of α for a set of 16 individual AIDA experiments. The error bars are obtained from the MC uncertainty estimate described previously.

- Both models in good agreement with each other with all best-fit points in the range 0.1-1
- Lower values than 0.1 excluded by the error estimate, independent of the aerosol type (SIGMA)
- Temperature averaged value $\alpha = 0.9^{+0.1}_{-0.7}$ (SIGMA)

Example experiment of the AIDA studies

- Dotted line: start of the experiment, i.e. start of pumping
- Dashed-dotted line: ice onset

Water vapor and total water are measured by two **tunable diode laser (TDL) hygrometers** [Fahey *et al.*, 2009]. From the difference of these two measurements, the ice water content is derived.

The ice number concentration C_n is measured by an **optical particle counter (WELAS)**.

ACKNOWLEDGEMENTS

This work was supported by the Helmholtz Virtual Institute

	Accuracy	ACPIM	SIGMA
S _{ice}	5%		•
Total water	5%	•	•
Ice number concentration	20%	•	•
Aerosol number concentration	20%	•	
Aerosol size distribution	10%	•	
Temperature	0.3 K	•	

- The ACPIM and the SIGMA model are in **good** agreement despite their different approaches in determining α

VII. CONCLUSIONS

- In the temperature range from 190 K to 230 K, values between 0.1 and 1 for α are preferred by both models
- The uncertainty analysis excludes α-values below
 0.1 with a temperature averaged value α = 0.9^{+0.1}_{-0.7}
 (SIGMA)
- These results suggest that α does not have a significant impact on ice growth in cirrus clouds

Aerosol Cloud Interactions (VI-ACI), www.imk-aaf.kit.edu/ 120_130.php

References

D. R. Haynes *et al.*, J. Phys. Chem. **96**, 8502 (1992)
K. M. Gierens *et al.*, J. Geophys. Res., **108**, D2, 4069 (2003)
U. Lohmann *et al.*, Environ. Res. Lett. **3**, 045022 (2008)
H. R. Pruppacher and J. D. Klett, 2nd ed., Kluwer Acad. (1997)
O. Möhler *et al.*, Atmos. Chem. Phys. **3**, 211 (2003)
D. W. Fahey *et al.*, AquaVIT White Paper (2009), available at https://aquavit.icg.kfa-juelich.de/AquaVit/AquaVitWiki
P. J. Connolly *et al.*, Atmos. Chem. Phys. **9**, 2805 (2009)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Contact: julian.skrotzki@kit.edu

www.imk-aaf.kit.edu