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(5) Propagation of tracer signal

a Observations b Model

(4) Tracer signal in the boundary & interior
Observations Figure 3 | a, CFC-11

(1) Motivation: Are Lagrangian and Eulerian
observations consistent with each other?
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velocity, and w is the vertical | Nl There are significant amounts of tracer in the basin interior as well as high discontinuity at the Subpolar-Subtropical Gyre boundary.
velocity”. Flow in the interior is L ("J | \\\ A= = concentrations in the DWBC. The DWBC tracer core and basin interior
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deep convection at high latitudes. \ R (6) Mean and variability of pathway transit times

In this model, the DWBC 1s the .
return limb of the interior
poleward flow.

ANSWER: The DWBC has the youngest waters but the largest age variability.
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. : . A T . el trajectory ensemble Figure 6 | Isopycnal buoyancy frequency, N [x10” rad s ], N =4| = —
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figure 1s the same as

for Fig. 3c. An LSW-level 1sopycnal thins southward, consistent with

‘equatorward interior flow & the Stommel-Arons balance.

(3) Data sources, methods, and model

(1) A hydrographic climatology was constructed for the North Atlantic using historical to 2009
CTD and bottle data from the National Ocean Data Center (NODC). The data were quality-
controlled with a statistical check in isopycnal coordinates using the HydroBase2 package”.
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as 5-day averages and the CFC-11 fields (computed online) are available as monthly averages.
(4) Trajectories were computed offline from the 1980-2004 ORCAO025 velocity fields with the

ARIANE package’.
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