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Introduction and motivating questions Zonal mean-eddy decompositions of interaction terms and fluxes Rotational and divergent decompositions of KE spectra
We study synoptic and large-scale atmospheric circulation in the framework of 2D turbulence To study the role of the mean flow in inducing spectral transfers, we decompose the interaction = Decomposing the KE specitra into rotational and divergent components (Fig. 9) reveals that the spectral
theory, using the modern high resolution ECMWF ‘International Polar Year’ operational terms and fluxes into zonal mean-eddy and eddy-eddy contributions. break distinguishes a balanced (i.e. divergent KE < rotational KE) synoptic-scale regime from an
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stratosphere in the ECMWF |IPY analysis allows us to compare stratospheric nonlinear spectral = 5 N plosmr——0 around n = 8 in the troposphere; o 107 o
dynamics, driven primarily by planetary waves, with tropospheric dynamics, sourced by g |2 zonal-eddy interactions carry KE 510 s
baroclinic excitation. Using change-point methods, we show that the IPY analysis resolves a s B up to n = 3. 5 107 R I\ e
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strengthen with altitude,

The ECMWF IPY winds are T799 forecast analysis data interpolated to a regular latitude- ; | | - % consistent with a stronger polar 20
longitude grid. They are available on 91 hybrid model levels at 00 h, 06 h, 12 h, and 18 hr UTC, < ik 00 jet, more active surf zone, and 5 40
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