
3. Dynamically Important Buoyancy Forcing?
 

4. Mapping the Rotational Buoyancy Forcing onto the MOC2. Classical Scaling Arguments

1. Introduction

Due to the complexity of the equations governing the ocean 
circulation, great effort has been invested in seeking a simple 
relation between the Atlantic meridional overturning 
circulation (MOC) and basic metrics of the ocean state. 
Particular attention has been given to the MOC dependence on 
the meridional density gradient (MDG). The classical view 
of the MOC as gravity current depending linearly on the MDG 
has been challenged in many numerical modelling studies.

Does a fixed MOC-MDG proportionality exist?

We derive a new analytical expression for the MOC-MDG 
dependence. By defining a buoyancy “force function” we 
obtain information on both strength and structural changes 
of the MOC in response to MDG changes.  
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6. Simple View of the MOC 
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 Linear MOC-MDG relation
 Scale the thermal wind equation assuming the depth scale, H, is 
 constant and the horizontal velocity components are similar
(Robinson and Stommel 1959, Bryan and Cox 1969):

• Substantial support for both the linear MOC-MDG relation 
(Hughes and Weaver 1994, Rhamstorf 1996, Thorpe et al. 2001, Griesel and 
Maqueda 2006, Dijkstra 2008) and a power law relation (Winton 1996, 
Marotzke 1997, Park and Bryan 2000) from numerical models.

• Numerical evidence also suggests the MOC may even be anti-
correlated with certain measures of the MDG (Nilsson et al. 2003, 
de Boer et al. 2010).

Uncertainty in:
1. Validity of               assumption 
2. Relevant      (Thermocline depth? Depth of max. MOC?) 
3. Relevant           (Surface? Depth averaged?)
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 MOC-MDG power law relation
 Extend the scaling to permit variations in       e.g under  
 advective-diffusive balance (Bryan and Cox 1967):
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  We isolate the purely rotational part of the buoyancy 
forcing which projects directly onto the 

Eulerian acceleration.
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FIG 1: 2D example:             
         removes/returns 
fluid from/to the 
boundary satisfying 
continuity and the 
kinematic boundary 
condition.          is wholly 
responsible for the net 
acceleration of the fluid.
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Introduce a “force function” to describe          (Marshall and Pillar 2011) F
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Any force,   , can be decomposed into rotational and divergent parts:F

 projects entirely onto the pressure gradient

 projects entirely onto the local acceleration
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7. Future Work
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FIG 5b: sea surface density 
(Jackett and McDougall 1995). A 
fixed meridional temperature 
gradient (                        ) 
produces a greater MDG in a 
warmer ocean:         /         = 2.3�⇢2 �⇢1
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FIG 5a: wind profile for the 
control run (black) and the 
extreme high wind case (    = 3). 
Stronger winds produce a deeper 
overturning.
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5. A New Analytical MOC-MDG Relationship

Invoking integration by parts, the geostrophic and thermal wind equations we find: 
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 = depth of maximum MOC
3. Relevant          = MDG integrated between the surface and the depth of the max. MOC 
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(Pillar et al. 2012)AF = AOT +A(z)
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(i) Currently seeking empirical support for equation (3)
- idealized numerical experiments based on de Boer et al. 2010
- two ensembles designed to explore the MOC over a range of  
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and MDG. 

(ii) Extension to complex geometries
- for heterogeneous bathymetry the barotropic forcing projects onto the  
  overturning non-uniformly.
- we may distinguish between the shear and “external mode” parts:
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FIG 4: Rotational Coriolis and buoyancy 
forces are equal and opposite in the 
geostrophic interior. Within the viscous 
boundary layers thermal wind balance 
breaks down and the MOC is driven by 
shear in the ageostrophic zonal velocity 
tilting planetary vorticity into the y-z 
plane. 

                         Consistent with de Boer et al. 2010 but note:
                              also gives information on MOC structure. A(x)
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FIG 3: Strong similarity has been shown between the 
MOC and buoyancy           in an idealized numerical 
model of the MOC (Marshall and Pillar 2011).  The rotational 
buoyancy force accelerates the MOC at the boundaries 
where compensation from Coriolis is absent.
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    vanishes on the top and bottom boundaries:         A(x)
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FIG 2: In the hydrostatic limit,        , 
can be written in terms of overturning 
and barotropic parts. The zonal
overturning force function,         , 
describes the projection of a force onto 
the MOC.
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