Remote Sensing of the Coastal Ocean with Standard Geodetic GNSS-Equipment
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CARRIER PHASE METHOD INTRODUCTION: THE GNSS-BASED TIDE GAUGE SIGNAL-TO-NOISE RATIO METHO
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(RHCP) and the reflected signal (LHCP) are analyzed. _(60,&@9,’?/'/ Installed at the Onsala Space Observatory (OSO), measuring sea level connected to the RHCP) are analyzed. .(eo\(%f\?f?x”/

The reflected signals experience an additional path -dRHCP using GNSS_ signals_ reflected off the local sea S_urfacez S€EE _Figure 1. — The satellite signals reflected off the sea surface e ey

delay compared to the direct signals, see Figure 2. P @ The installation consists of two antennas, one zenith-looking Right Hand ' W ;- . okl interfere with the direct signals, known as multipath, see ﬂunRHCP S

— The LHCP antenna can be regarded as a virtual 1\’ LHcP \ee-c’f??'/ Circularly Polarized (RHCP) and one nadir-looking Left Hand Circularly et Figure 4. This causes oscillations in the SNR data, see S

antenna located below the sea surface. T /5‘;”’?\?—0 } Polarized (LHCP). Each antenna is connected to a standard geodetic Figure 5A. 0 T 6 —

When the sea level changes, the path delay of the I o o GNSS receiver. Sea level is estimated using two different methods: From the SNR oscillations it is possible to determine the

reflected signal changes, thus the LHCP antenna will water surface |. CARRIER PHASE METHOD: Carrier Phase (CP) from both receivers vertical d'$tance between the antenna phase centre and Figure 4 — Schematics of the SNR

appear to change position. Figure 2 — Schematics of the carrier (the direct signals from the RHCP antenna and the signals reflected off L reﬂecimg Sea_sur.f aee; . method: receiving the direct signal

Since the height of the LHCP antenna over the sea |phase method; receiving both direct the sea surface from the LHCP antenna) are used in standard geodetic = Thlf dlSti?n_CitIS directly proportional to the sea and the reflected signal as multipath.

surface is directly proportional to the sea surface |and reflected satellite signals. processing. nbatthed The dataset consists of 8 months of 1 Hz

height and the RHCP antenna is directly proportional

. . . . ists of hs of - - - = | | . . _

to the land surface height, the installation monitors: '{h:ziiisTédc%nﬁggdzt:fQ%nt > Il.SIGNAL-TO-NOISE RATIO METHOD: Signal-to-Noise Ratio (SNR) T51 A — ngOpltidMissfsflzglNlR data from SEP 16,
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— sea level independent of land motion. SR e T e sferels, surface reaching the antenna backside, a.k.a. multipath). 20 o5 30 35 20
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— there are less observations from 140 @ 30 1 1 fitting and removing 2:nd order polynomials.
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Figure 8 — Scatter plots of the sea level for the phase and the SNR Figure 8 depicts pairwise — the correlation coefficients are larger than 0.92. — continuous measurements with high temporal resolution and good S S —— S
method versus sea level from a synthetic tide gauge, A and B, scatter plots. | From ocean tide analysis, several major tidal components are agreement to traditional tide gauges, Figure 9 — An ocean _tlde analysis of _the _GNSS—derlved sea Ie_\{el (carrier phase, , and SNR,
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