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1. Ground Motion Models 3. Graphical Models

e describe ground motion caused by earthquakes A Graphical Model describes a joint probability distribution, e.g. P (PGA, M, R, SD, Qo, ko, Vs30), decomposing it into a product of (local) conditional probability distributions
given event and site related predictor variables according to a directed acyclic graph, which encodes the conditional independences. We investigate graphical models admitting to different factorizations:

e a popular model, based on physical principles, is (Tree Augmented) Naive Bayes Naive Bayes (NB) Bayesian Network
the so-called stochastic model y

e all variables depend only on the target variable

e because of its complexity, a surrogate model is of- . .
prextty 5 = attributes are assumed to be independent

ten used instead

e usually a regression function is fitted through data e perform well in classification tasks

generated by the stochastic model; the functional ‘ e computationally simple
form is derived from expert knowledge; e.g.:

Tree Augmented Naive Bayes (TAN)
f(M,R SD,x,Vs30) = ag + a1 M + (ag + agM)In \/%21 + R2 4

a5 M - In SD + agrR + a7 V30 + ag In SD e cach attribute can depend on one more variable in addition to the target

R k :
with k= kg +t*, t* = and Vgq = 3.5 . variable

QO Vs q S . . .
e relaxes independence assumption of Naive Bayes

Bayesian Networks (BN)

NB: P(M|PGA)P(R|PGA)P(SD|PGA) e structure learned from data P(M)P(R)P(SD)P(Qo) P(ko) P(Vs30|PGA)

P(Qo|PGA)P(ko|PGA)P(Vs30|PGA)P(PGA) P(PGA|M, R, SD, Qo, ko)

magnitude 5 LT ' : . .
magnitude ° , N Naive Bayes (black edges) and e no assumptions about dependencies required

magnitude 7 ™ Tree Augmented Naive Bayes (black and red edges)
learned from synthetic seismic data set
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: : i , Bayesian Network learned from the synthetic
e gives intuition about dependency structure of the underlying system

seismic dataset of the stochastic model

distance

e Directed Graphical Models are a viable alterna- 4. Automatic Discretization

tive, having several advantages, e.g.

- aHOW inferenCe lIl all direCthnS} all COnditiOHal diStI‘l— marginal distribution and colorcode of log PGA Continuous Variables are discretized tO allOW for diStribUtion_free learning marginal distribution and colorcode of log PGA
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automatic discretization process, considering graph structure and distribu-

tion Of the Variables for discretization Discretization of SD (log scale) Discretization of Qg (log scale)

butions of interest can be calculated

- prior kﬂOWledge Can, but does nOt have tO be in— Discretization of SD (log scale) Discretization of Qp (log scale)
cluded; no prior assumptions about functional form j
and physical relationships required JE | ] | |

- can learn the dependency structure of the variables piscretization of k (log scale) piscretization of V30 for Bayesian Networks, Minimal Des cription Length is applie L Seeretsatonof e o acae o
from the data j ‘ ‘ j

- can deal with missing values
| | | | |
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for (Tree Augmented) Naive Bayes class entropy is used” i I i
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the methods are extended to allow for the usage of a continuous target
variable
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Discretization of M Discretization of R (log scale)
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Discretization of M Discretization of R (log scale)
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e e ‘ 54%38 “Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes j j Q
for classification learning (1993) ° 621 s 08 53 1791 5861 20038
Discretization of attributes and conditional distrioution of bFriedman, N., Goldszmidt, M.: Discretizing Continuous Attributes While Learning
2. Data SEt PGA (color coded) for (Tree Augmented) Naive Bayes Bayesian Networks. In Proc. ICML (1996) of PGA (color coded) found for Bayesian Network
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Discretization of attributes and conditional distribution

Using a sample of the predictor variables
M - moment magnitude of the earthquake, 5 5 ReSU |tS

R - distance between source and site,

This poster participates in

The three Graphical Models and a regression model (derived from expert knowledge) are compared in a 5-fold cross validation.
SD - stress released during the earthquake,

e on average all three Graphical Models perform better than the regression model Mean squared errors of the prediction of In PG A

: : : Regression NB TAN BN
ko - attenuation near the surface, e without any prior knowledge about the model structure, the learned Bayesian Net- % 060 0438 0500 0569

V530 - average shear-wave velocity in upper 30m work enables for a correct interpretation of the (in)dependences between the vari- . 0.679 0.489 0.525 0.598

ables : 0.688 0.566 0.566 0.583

we apply the stochastic model to generate correspondin
PPy 5 P 5 e the Bayesian Network detects a strong dependency of the peak ground acceleration ‘ 822(1) gigg 8ZZZ gggg Outstanding Student

on magnitude, distance, stress drop and xg : - 5 —— — Poster Contest

Qo - attenuation of seismic wave amplitudes in deep layers,

ground motion values, i.e.

PGA - the peak ground acceleration.




