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1. Ground Motion Models
• describe ground motion caused by earthquakes

given event and site related predictor variables

• a popular model, based on physical principles, is
the so-called stochastic model a

• because of its complexity, a surrogate model is of-
ten used instead

• usually a regression function is fitted through data
generated by the stochastic model; the functional
form is derived from expert knowledge; e.g.:

f(M,R,SD,κ,VS30) = a0 + a1M + (a2 + a3M) ln
√
a24 + R2 +

a5M · lnSD + a6κR + a7VS30 + a8 lnSD

with κ = κ0 + t
∗
, t

∗
=

R

Q0Vsq
and Vsq = 3.5

km

s
.
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• Directed Graphical Models are a viable alterna-
tive, having several advantages, e.g.
- allow inference in all directions; all conditional distri-

butions of interest can be calculated
- prior knowledge can, but does not have to be in-

cluded; no prior assumptions about functional form
and physical relationships required

- can learn the dependency structure of the variables
from the data

- can deal with missing values

aBoore, D.M.: Simulation of ground motion using the
stochastic method. Pure and Applied Geophysics 160, 635-676
(2003)

2. Data set
Using a sample of the predictor variables

M - moment magnitude of the earthquake,
R - distance between source and site,
SD - stress released during the earthquake,
Q0 - attenuation of seismic wave amplitudes in deep layers,
κ0 - attenuation near the surface,
VS30 - average shear-wave velocity in upper 30m

we apply the stochastic model to generate corresponding
ground motion values, i.e.
PGA - the peak ground acceleration.

3. Graphical Models
A Graphical Model describes a joint probability distribution, e.g. P (PGA,M,R, SD,Q0, κ0, VS30), decomposing it into a product of (local) conditional probability distributions
according to a directed acyclic graph, which encodes the conditional independences. We investigate graphical models admitting to different factorizations:

(Tree Augmented) Naive Bayes

NB: P(M |PGA)P(R|PGA)P(SD|PGA)
P(Q0|PGA)P(κ0|PGA)P(VS30|PGA)P(PGA)

Naive Bayes (black edges) and
Tree Augmented Naive Bayes (black and red edges)

learned from synthetic seismic data set

Naive Bayes (NB)
• all variables depend only on the target variable
⇒ attributes are assumed to be independent

• perform well in classification tasks

• computationally simple

Tree Augmented Naive Bayes (TAN)
• each attribute can depend on one more variable in addition to the target

variable

• relaxes independence assumption of Naive Bayes

Bayesian Networks (BN)
• structure learned from data

• no assumptions about dependencies required

• gives intuition about dependency structure of the underlying system

Bayesian Network

P(M)P(R)P(SD)P(Q0)P(κ0)P(VS30|PGA)
P(PGA|M,R, SD,Q0, κ0)

Bayesian Network learned from the synthetic

seismic dataset of the stochastic model

4. Automatic Discretization
marginal distribution and colorcode of log PGA
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Discretization of attributes and conditional distribution of

PGA (color coded) for (Tree Augmented) Naive Bayes

• continuous variables are discretized to allow for distribution-free learning

• automatic discretization process, considering graph structure and distribu-
tion of the variables for discretization

• for (Tree Augmented) Naive Bayes class entropy is useda

• for Bayesian Networks, Minimal Description Length is appliedb

• the methods are extended to allow for the usage of a continuous target
variable

aFayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes
for classification learning (1993)

bFriedman, N., Goldszmidt, M.: Discretizing Continuous Attributes While Learning
Bayesian Networks. In Proc. ICML (1996)

marginal distribution and colorcode of log PGA
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of PGA (color coded) found for Bayesian Network

5. Results
The three Graphical Models and a regression model (derived from expert knowledge) are compared in a 5-fold cross validation.

• on average all three Graphical Models perform better than the regression model

• without any prior knowledge about the model structure, the learned Bayesian Net-
work enables for a correct interpretation of the (in)dependences between the vari-
ables

• the Bayesian Network detects a strong dependency of the peak ground acceleration
on magnitude, distance, stress drop and κ0

Mean squared errors of the prediction of ln PGA
Regression NB TAN BN

1. 0.666 0.488 0.509 0.569
2. 0.679 0.489 0.525 0.598
3. 0.688 0.566 0.566 0.583
4. 0.681 0.592 0.597 0.759
5. 0.650 0.473 0.494 0.579

Avg. 0.673 0.522 0.538 0.617
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