

Methane ebullition and fate in the Rhone River delta: Hydroacoustic evaluation of ebullition

Tonya DelSontro¹, S. Sollberger¹, J.P. Corella², B. Wehrli¹, S. Girardclos², F.S. Anselmetti³, D.B. Senn¹

¹EAWAG, Institute of Aquatic Science and Technology, Kastanienbaum & Dept. of Environmental Sciences, ETH Zurich, Switzerland; ²Environmental Sciences Institute and Dept. of Geology and Paleontology, Univ. Geneva, Switzerland; ³EAWAG, Institute of Aquatic Science and Technology, Dubendorf, Switzerland

Figure 9. (a) Locations of bubbles

- negligible amount

Figure 10. Amount of CH₄ released to atmosphere depends on initial bubble size (colored lines show diameter), release depth, gas concentrations in bubble and in ambient water

26 22 Diameter (mm) 1.08 2.29 4.18 6.9 10.6 .085 Volume (ml)

Figure 8. Bubble size distribution expressed as bubble diameter and volume.

Fate of CH₄ bubbles

• A bubble of average size (7.5 mm) will release 50% of its CH_4 to the atmosphere if released from 20 m, but only 10% from 60 m and 0 from 100 m (Fig. 10)

• From the average depth of the delta region (30 m) and using the average estimated flux (Table 1), the 1.7 km² delta emits ~0.2 t CH₄ per day in summer

Therefore, the Rhone River delta emits up to 70 t CH₄ per year, a small but non-

Avg. Rise Velocity (V _z)	0.24 m/s
Avg. CH ₄ Fraction (F)	84%

Rhone Delta egion (Fig. 9)	Ebullition Flux, J (mg m ⁻² d ⁻¹)
Delta	400
Northeast	300
Southwest	230
Average	310

Acknowledgements

Thanks to C. Dinkel, M. Schurter, A. Zwyssig, and A. Arantegui for valuable help in the field. Thanks to H. Balk, I. Ostrovsky, and A. Rynskiy for help with hydroacoustic analysis. Multibeam data courtesy of Institute F.-A. Forel, University of Geneva and published in Sastre et al. (2010). This project was funded by the Elemo project and Eawag.

References

¹Bastviken, D., L. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.

²DelSontro, T., M. J. Kunz, T. Kempter, A. Wüest, B. Wehrli, and D. Senn. 2011. Spatial heteorgeneity of intense methane ebullition in a large tropical reservoir. Environ. Sci. Technol. doi:10.1021/es2005545

³DelSontro, T., D. F. Mcginnis, S. Sobek, I. Ostrovsky, and B. Wehrli. 2010. Extreme methane emissions from a Swiss hydropower reservoir: Contribution from bubbling sediments. *Environ. Sci. Technol.* 44: 2419-2425. doi:10.1021/es9031369 ⁴Ostrovsky, I., D. F. Mcginnis, L. Lapidus, and W. Eckert. 2008. Quantifying gas ebullition with echosounder: The role of methane transport by bubbles in a medium-sized lake. Limnol. Oceanogr. Methods 6: 105-118.

⁵Sastre V., Loizeau J.L., Greinert J., Naudts L., Arpagaus P., Anselmetti F.S. and Wildi W. 2010. Morphology and recent history of the Rhone River Delta in Lake Geneva (Switzerland). Swiss Journal of Geosciences 103: 33-42.

EGU2012-10539

Tonya DelSontro <u>tdelsontro@gmail.com</u> ETH Zurich Aquatische Chemie Universitätsstrasse 16 8092 Zurich, Switzerland

 $\widehat{}$

BY