

## **UNIVERSITY OF** GOTHENBURG

(1) Department of Earth Sciences, University of Gothenburg, Sweden (anna.hedenrud@gu.se), (2) Department of Physical Geography and Ecosystems Science, Lund University, Sweden

## **Project** aim

To investigate the impact of sewage sludge as fertilizer on  $N_2O$  emissions from a willow bioenergy plantation.

## **Result summary**

- The N<sub>2</sub>O emission size is dependent on weather conditions. The timing of fertilization is therefore important for managing N<sub>2</sub>O emissions.
- There are low excess emissions of N<sub>2</sub>O-N after sewage sludge fertilization, despite high peak emission events.





# Background

- By the year 2020, 20% of the EU's total energy consumption must come from renewable energy according to an EU directive.
- Plantations of willow (*Salix spp*) are grown in Europe today, and the biomass produced is used as a source of renewable energy.
- In Sweden, sewage sludge from sewage treatment plants is used as fertilizer after harvest of a willow plantation.
- The sludge creates a favorable environment for formation of the greenhouse gas nitrous oxide  $(N_2O)$ because of its high content of organic material, bioavailable nitrogen and moist character.
- The default emission factor for direct emissions of  $N_2O$  is 1 % (IPCC, 2006).
- The impact of sludge on N<sub>2</sub>O emissions has not yet been evaluated.

# Nitrous oxide emissions after sewage sludge fertilization of a willow bioenergy plantation

## A. Hedenrud (1), C. Achberger (1), L. Klemedtsson (1), S. Rychlik (1), A. Lindroth (2)



Plots **Fig. 1.** Accumulated N<sub>2</sub>O emissions, control plots (1,3,5) and fertilized plots (2,4,6). Control plots: n1=210, n3=176, n5=211 Treatment plots: n2=210, n4=202, n6=207

| Plot | Applied N<br>(kg/ha) | Excess emissions<br>of N <sub>2</sub> O-N (%) | Fertilization date |
|------|----------------------|-----------------------------------------------|--------------------|
| 2    | 229                  | 0.13                                          | May 28, 2012       |
| 4    | 324                  | 0.46                                          | May 14, 2012       |
| 6    | 263                  | 1.76                                          | May 14, 2012       |

**Table 1.** Total N applied for each fertilized plot. Excess emissions of  $N_2O-N$  in percent. Time period 1st April to 30th November 2012. Treatment plots: n2=210, n4=202, n6=207

- N<sub>2</sub>O emissions.



There was a large N<sub>2</sub>O emission peak from all plots in the middle of May (Fig. 2). Because of very little vegetation left after harvest, incoming precipitation could wet the soil thoroughly. At the same time, spring N mineralization created bio-available soil nitrogen. These circumstances favored the formation of N<sub>2</sub>O soil emissions from controls as well as treated plots.

• Note however that emissions from treated plots (4 and 6) were a factor 10 higher compared to controls and plot 2 (fertilized at a later date) (Fig. 2).

• The fertilization of plot 2 did not lead to any  $N_2O$ emissions the following weeks. This suggests that the drier weather conditions, together with the N<sub>2</sub>O peak earlier in May connected to spring N mineralization, did not favor soil  $N_2O$  formation. The total  $N_2O$  emissions from plot 2 are close to values from control plots (Fig. 1). All treated plots, however, show a similar pattern of N<sub>2</sub>O emissions throughout the measurement period.

• For plot 2 and 4, the excess emissions of N<sub>2</sub>O-N are lower than the 1% default emission factor for N<sub>2</sub>O (IPCC), but plot 6 shows larger excess emissions (Table 1).

• The results highlight the importance of timing fertilization to suitable weather conditions for lower

The study site is a bioenergy willow plantation (2 ha) in south-western Sweden.

N<sub>2</sub>O emissions from the soil ecosystem were continuously measured using chamber technique and a trace gas analyzer.

6 chambers were used in a rotating schedule on 3 control plots (no sludge fertilization) and 3 treatment plots (sludge fertilization).

The area was harvested in the end of March 2012, and fertilized with sewage sludge the 14th and 28th of May. Heavy precipitation during the first fertilizing event led to two different fertilizing dates.



## **Materials and methods**



Fertilizing event with sewage sludge in May 2012.



Chambers measuring in the harvested field.

### Acknowledgements

We thank the Swedish Energy Agency for funding the project. Thank you to the dedicated field personnel David Allbrand and Johnny Härnströmer. An immense thank you to the landowner Anders Jonsson for his committed support.