

Backgrounds		CULKE	nt
 Representation of v 	vertical turbulent	transport in weat	her and cli
- For variable φ (φ. μ	vAa)		
	, , , , , , , , , , , , , , , , , , ,		
Temporal change of grid (Δ) mean state (resolved motions)	$\frac{\partial \langle \phi \rangle}{\partial t} =$	$\frac{\partial \langle w'c' \rangle}{\partial z}$	Unresolved affect the
	plan	This term is express etary boundary layer	ed by the so- • (PBL) param
 The assumption behind the second seco	filter scale, <i>I</i> : scale of BL are subgrid-scale is valid for Δ~O(10 k	terization ⁻ large eddies). There (SGS) and parameter m) or larger.	fore, all the t rized.
• "Grey zone" or "Te	rra Incognita"		
- At forthcoming high	resolutions: at <u></u>	!?	
 Turbulent proce SGS energy chai 	sses are partly resol nges according to Δ.	ved & partly SGS: th	e "grey zone
Δ <	10		100
100 km	10 km / ~ Ο(1 k	/ m) for Convective Pl	100 m BL
 3. SGS parameteriz Δ >> I − all turbu Δ << I − using LE Δ ~ I − both met → A SGS paramet 	zation in the grey zor Ilences in the PBL are S, large eddies are ex chods cannot be use cerization that works	ne? e parameterized by t xplicitly calculated & only small d: <i>"terra incognita"</i> in the grey zone is a	he PBL param eddies are p (Wyngaard 20 needed.
 4. So, what happed (1) For each var dependency function (2) 'How to make zone' is one of the 	<i>ns in the grey zone?</i> riable (e.g., TKE) at <i>ion</i> is suggested <i>for</i> of the SGS coherent important question	– A precedent study each layer (e.g., mix different types of constructures (e.g., the s for the future SGS p	y of Honnert ked layer), <i>a</i> nvective PBLs rmals) weak parameteriza
 Two main question PART A: What are PART B: Can we part of transports 	is of this study, m the effects of stabil provide a reference f herent structures?	otivated by Honne ity in CBLs on the sco for the grid-size dep	ert et al. (20 ale depender endency of t

Summary

We analyzed grid-size dependency of the SGS vertical transport in CBLs, which differ in relative importance of shear and buoyancy forces (i.e., stability). According to the increase of horizontal scale of the coherent structures, the grid size corresponding to the grey zone increases as the relative importance of shear increases. The grid-size dependency and the effects of stability on it are largely determined by the non-local transport.

Analysis of subgrid-scale vertical transport in convective boundary layers at grey-zone resolutions

Hyeyum Hailey Shin and Song-You Hong

Department of Atmospheric Sciences, Yonsei University, Seoul, Korea (e-mail: hyeyum@yonsei.ac.kr)

A. Effects of stability

Methods

Case		<i>w</i> ′ <i>θ</i> ′₀ (K m s⁻¹)	<i>U_g</i> (m s⁻¹)
BT	buoyancy-driven (B), and organized thermals (T) appear	0.20	0
BF	buoyancy-driven (B), as well as wind-forced (F)	0.20	10
SW	weaker shear	0.05	10
SS	stronger shear	0.05	15

