Southern Ocean Eddies as Weather Makers
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Motivation

Eddies of scales of the order of 100 km are
omnipresent in the global ocean, domi-
nating the ocean’s kinetic energy [1].

These mesoscale eddies typically feature
sea surface temperature (SST) anoma-
lies and hence represent non-stationary
circular SST fronts.

SST fronts may impact the atmosphere [2].
Therefore, an impact of ocean eddies on
the atmosphere is anticipated.

‘ Do ocean eddies systematically affect
the overlying atmosphere due to their
SST anomalies?

Data

Satellite data of the period 2002-2009:

® AVISO [3] sea level anomalies for eddy
detection (1/3°, weekly);

® Atmospheric quantities (1/4°, weekly):
wind (QuickScat [4]); cloud fraction
(GlobColour [5]); liquid cloud water and
rain (AMSR-E [4]).

Method

® Detection of >600 000 snapshots of
ocean eddies: Eddy where vorticity is
greater than strain [6][7];

® Collocation of detected eddies with at-
mospheric quantities;

e Atmospheric anomalies (for Fig. 2, 3):
difference of ‘eddy impact area’ (mean of
circle of 2 eddy-radii) and 'background’
(peripheral ring of 3 eddy-radii).

Mean composite maps of oceanic eddies and their atmospheric imprints
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Figure 1: Mean com-
posite maps, x- and y-
axes are given in radii
(R) of eddies, the white
circle marks the de-
tected eddy-core and
black contours sea
level anomalies associ-
ated with the eddies,
the eddies were scaled
according to the indi-
vidual eddy amplitude
and radius, interpolat-
ed and rotated before
calculating the mean
composite so that the
large-scale wind is
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Correlation of SST anomalies of
eddies and anomalies of liquid
cloud water
Figure 2: 60°x4°
bins,; white dots

mark bins where
correlations are not

significant (p<0.01),

black contours
denote mean posi-
tions of the two
major fronts of the

Antarctic Circumpo-
0.3 lar Current [8].
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Linear relationship of SST anomalies
of eddies and liquid cloud water

0.03f | Figure 3: Liquid
cloud water anoma-
lies binned accord-
ing to SST anoma-
lies; vertical bars
show three standard
errors of the mean.

. 1 The least square fit
SST anomaly [°C]| to the unbinned data

0 2 4 is shown as black
line; other atmospheric quantities show a similar

linear relationship (not shown).
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Mechanism of the impact of mesoscale oceanic eddies on the atmosphere
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Figure 4: Mean composite of the wind di-
vergence (left), downwind SST gradient

( Anticyclonic eddies )

(middle) and divergence of the SST gradi-
ent (right); the latter reflects the expected
| pattern of the sea level pressure anomaly

related to an SST anomaly [9],; otherwise

site sign for cyclonic eddies (not shown).
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The resemblance of the wind divergence

and the downwind SST gradient favors the

downwind momentum mixing mechanism
as explanation in contrast to the pressure

~10
x10 adjustment mechanism [10].

as Fig. 1, the picture is similar but of oppo-

Results

' Ocean eddies affect the atmosphere locally [11] (Fig. 1-3):

5% change of wind, 3% of cloud fraction, 6% of liquid cloud water and 8% of
rain rate and probability per 1°C of SST anomaly.

‘ Mechanism: stability change of the atmospheric boundary layer (Fig. 4, 5).
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Figure 5: Schematic to summarize the impact of oceanic eddies on the lower atmosphere; the situation
is depicted for a Southern hemispheric warm-core anticyclone (left) and a cold-core cyclone (right), indi-
cated with red versus blue colors; wind blowing across the narrow SST gradients affliated with the SST
anomalies of eddies results in an air-sea disequilibrium and corresponding adjustments of heat and mois-
ture fluxes, leading to a change of the marine atmospheric boundary layer stability and thickness; the as-
sociated modifications of the boundary layer turbulence and associated vertical momentum as well as
moisture transports may evoke a response of wind, cloud properties and rain.

Outlook

Analysis of a newly developled coupled at-
mosphere-ocean regional model (COSMO
-ROMS [12][13], Fig. 6), objectives are e.q.:

Sensible heat flux standard deviation [W/m?]
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‘ Can the model system reproduce the ob- §
servational findings? L -

(@) Impact of the ocean mesoscale variabili-
ty on the atmospheric mean/variance?

‘ Effect of the atmospheric feedback on
the ocean (e.g. eddy dissipation)?

Figure 6: COSMO forced with reanalysis data (ERA-Interim) .
lacking mesoscale variability (top); COSMO-ROMS coupled |y
simulation where mesoscale variability is resolved; the varia- ||i"
bility of heat fluxes (and other quantities, not shown) is clear- | ¢
ly increased (shown for winter 2004, preliminary results). S
Domain & resolution: South Atlantic, 0.1°/6-hourly output,
Simulation period: 2 winters (June-August 2004/2005).
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