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® The India-Asia collision zone formed around 50 million years ago, when the Indian continent collided with Eurasia. Reference Model EVOIUﬁon and general aspeCtS Denser Upper Plate
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(Royden et al., 2008, Beaumont et al., 2004).
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Modified Model Setup

o L1-X‘2 - External forcing e

e We use the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference - v I . n=se2spas
staggered grid (FDSTAG) solver, viscous rheology and an internal free surface, which allows for the development d ' | _ 1. Ridge Push p = 3100 kg/m
of topography Complete slab 4 2707 . ; - simulate far field forces (referred here as “pushing”)

detachment and ] Z N — ; (Chemenda et al., 2000, Li et al., 2008)
interplay between trench 7 IR

advance and trench roll-back "

e We simulate both free subduction-collision models, and with imposed velocity boundary conditions
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Fig. 2. a-b) Initial model setup was built using ) .
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Phases: OUM - Oceanic Upper Mantle (Lith), T e B EEEETE |
OC - Oceanic Crust, AUM - Asian Upper Mantle (Lith),

AC - Asian Crust, IUM - Indentor Upper Mantle (Lith), - '
IC - Indentor Crust, LM - Lower Mantle. Case 1 Slab pu” and dynamlcs Of the Slab
The rheological parameters used for the

reference model are displayed in the colorbar.
Reference values for the mantle: n = 1e20 Pa.s, ‘ ,
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Amplitude of topography increases
dramatically with pushing

Pushing is imposed as
Dirichlet boundary conditions

e i, O | e More than 200 numerical simulations and factors such as slab pull, deformable continental indentor, upper plate and ex-
e ez et . (2004) | ) ternal forcing have been perfomed here.
Trench roll-back e Dynamics of subduction-collision 3D models is very complex with distinct behaviours beneath the continental collision
Fast slab detachment beneath ) ) ]
continent and oceanic subduction ' ‘ and oceanic subduction at the sides.
Ulteielt o [Heio _\\ S e External pushing and the presence of strong blocks such as the Tarim Basin are necessary to create both high topo-

Inefficient subduction
Slow slab detachment C. | graphic fronts (Himalayas) and plateaus (Tibetan Plateau). Upper plate material properties also give a signature to the

Trench advance | K{ | topographic amplitude.

Fig. 3. Schematic of how the pushing BCs are
incorporated into the model. The pushing block
is defined by its center coordinates:
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® We assume that the properties of the lithosphere are the focus of this study, and choose reference values for the mantle. Stronger slab pull

® The model has 16 free parameters, and to test the basic response of the system to these parameters, it would require 2216 = 65536 runs.
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® Quinteros et al. (2010) showed that a viscosity contrast of 10 and denSIty contrast of 50 kg/m at the transition zone between the upper Weak Indentor [ Strong |nd ntor e A weak indentor allows for the development of a curvature of . England P, Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research — Solid Earth and Planets 91

and lower mantle gives the best results of slab behaviour in numerical models compared to tomography observations. the collision front, while a strong indentor is too stiff to deform. (B3), 3664-3676.
. Li C., van der Hilst, R.D., Meltzer A.S., Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274 (1-2):157-168.

® A viscosity contrast between slab and mantle less than 10 Pa.s would result into an unstable, fragmented slab, contrary to what is ob- I _‘ e Convex curvature is obtained for all cases of a weak and heavy . Li, Z-H., Xu, Z., Gerya, T,, Burg, J-P, 2013. Collision of continental corner from 3-D numerical modeling. Earth and Planetary Science Letters, 380(C):98-111.
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Case 1 Case 2 Case 3 Case 4 G weak and |Ight indentor. . Replumaz, A., Karason, H., van der Hilst, R.D., Besse, J., Tapponnier, P, 2004. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth and Planetary Science
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N p 16 4% -9 63 e However, the surface horizontal velocity field for the weak . Royden, L.H., Burchfiel, B.C., van der Hilst, R.D., 2008. The geological evolution of the Tibetan Plateau. Science 321, 1054-1058.
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Table 1. Summary of cases and parameters varied. Stronger continental pull S S A obtained for runs with a stronger indentor. Numerical computations were performed on MOGON (ZDV Mainz) and Juqueen (Juelich) and the visualisation on GAIA (Geo Mainz) and Juvis (Juelich).
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