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1. Introduction

The seismic moment tensor (MT) reveals details
about source processes within the Earth that
cause earthquakes. Although uncertainties in
MT inversions are important for estimating
solution robustness, they are rarely available.
When earthquake location is retrieved
simultaneously with the MT, uncertainties in
structural Green’s functions also need to be
included in the method. The problem becomes
nonlinear and uncertainties in the source
mechanism cannot be calculated in a simple
manner.

2. Hierarchical Bayesian
inversion for the centroid
moment tensor

We have developed a method in a Bayesian
probabilistic framework to study moderate
earthquakes and explosions using waveform
data. The parameter posterior probability
distribution is determined by prior knowledge
and information obtained from the data:

p(m|d) = cp(d|m)p(m)
posterior « likelihood x prior

Forward modelling is performed using the code
AXITRA (Cotton and Coutant, 1997) to
precompute the Green’s functions and convolve
them with si1x elementary tensors composing

the seismic moment tensor
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Two Markov chain Monte Carlo algorithms are
run simultaneously: one for the location
parameters and another for the moment tensor
and noise level parameters.

Fig. 2: (right) Centroid locations for 5000 iterations in the
Markov chain for locations, colored by the iteration number.
Size 1s determined by the maximum variance reduction on
each location. Subplot in the upper left corner shows the
locations 1n 3D and the remaining subplots show cross
sections through the input source location.
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3.1. Location parameters
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3. dynthetic experiments

Synthetic seismograms were
computed for 5 stations (shown on
the figure on the right) at regional
distances and contaminated with
uncorrelated or correlated random
noise.
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Fig.l: Input synthetic seismograms with uncorrelated random
noise (with a variance of 25% signal RMS) (black) and the best fit
(minimum L2 misfit) solution (blue).

In most cases, the algorithm rapidly converges
to the input centroid location.

lteration number for location
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3.2. Moment tensor parameters

- Well determined (narrow posterior distributions)

- Average of posterior models can be 1influenced by outliers

Moment tensor coefficients
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Fig. 3: Posterior distribution of the parameters ai, normalized by the scalar moment
1s shown 1n dark blue. Prior distribution is given in light blue, the true model (1.e. the

input value) in red and the average solution in orange.

Discarded models
(burn-1n period)

Fig. 4: Double-couple part of models
from the burn-in period (before they are
collected for the ensemble) and models

proposed afterwards.
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3.3. Noise parameters: the hierarchical formulation

- Noise 1n the data determines the model complexity
- Adequate treatment of noise results in required data fit

- Noise variances act as weights for each station
- The data noise covariance matrix can account for measurement

and theory errors /
p(djm) =

Fig. 5: Centroid locations for
synthetics with correlated
noise, when uncorrelated
noise (a) and correlated

noise (b) was assumed in the

inversion.
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3.4. Simulating signal generated noise

Additional tests were performed
on synthetics with noise added in
the frequency domain,
simulating the propagation
effects on the wavefield.
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distributions of the
double couple (DC),
compensated linear
vector dipole (CLVD)
and 1sotropic (ISO)
components.
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Fig. 8: As 1n F1g.3, with inserted histograms of unnormalized
values for every coefficient of the MT.

4. Conclusions and future work

- A hierarchical Bayesian method was applied to the centroid moment
tensor inversion of waveform data at regional distances

- Synthetic tests show successful retrieval of model parameters

- Uncertainties can be estimated from the posterior probabilities

- Furthermore, the noise covariance matrix accounts for measurement
and theory errors and determines the model complexity

- Future work 1includes applying the algorithm on waveform data from
various tectonic settings



