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v. Conclusions and Outlook
 We have presented a novel approach for inferring magnitudes and hypocentral distances in real  
 time, based on single station records. 

 By simultaneously considering multiple frequency bands we can resolve the ambiguity between  
 the two main parameters magnitude and hypocentral distance.

 With an extensive data set we have demonstrated promising generalisation performances for   
 magnitude and source/station distance prediction: 1σ ~ 0.42 magnitude units and ~ 17 km, re-  
 specetively, using the �irst 3 seconds of real-time waveforms. Such high accuracy is necessary for  
 useful EEW applications in the crucial near-source region.

 Becasue the algorithm is based on partly different data than other EEW algorithms such as ElarmS,  
 OnSite or PRESTo, the �ilter bank algorithm can potentially provide information gain if used in   
 combination with those algorithms.

 Owing to the the probabilistic formulation it is straight forward to combine the estimates of mul- 
 tiple stations and to include prior information and externally derived location estimates.

 We are currently working on a real-time implementation of the algorithm at the Southern Cali-  
 fornia Seismic Network.

 Future developments will include the real-time recognition of S-phase arrivals, the use of prior   
 information and extending the algorithm to a full multi-station EEW system.

iv. Results 
We have applied both algorithms to 120,000 randomly selected traces from the data base. The 

mangitude prediction errors obtained when using the �irst 3 seconds of each trace are shown in 

Figure 5.

         

Method A: +  no bias (mean ~ 0) and low scatter around mean (1� ~ 0.42 ), comparable to   
         multi-station estimates of published EEW algorithms 

         -  magnitude saturation, underestimation of events with M>7

         -  near-�ield bias: systematic overestimation of magnitudes of near-�ield traces,   
     presumably because we do not account for whether the S-phase is already con 
     tained in the PGVnb observations or not

Method B: +  does not have the near-�ield bias that method A has

        +  once the coef�icients are computed, estimations are computationally cheap

    +  allows predictions of parameters that have not yet been observed, e.g. M>8

         - larger scatter than method A
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Figure 5:  Magnitude prediction error for method A (left) and method B (right).

Method A:  Non-parametric empirical maximum likelihood
In this memory based approach we measure PGVnb of the target trace and extract from the compiled waveform data set those traces that have produced the most similar amplitudes. 

This is performed in each frequency band and for each component individually. The magnitude and hypocentral distances of those traces are approximated with a bivariate Gaussian 

distribution which is taken to be the empirical likelihood function of the two parameters. We then combine the 9 likelihood functions from the different frequency bands and maximise 

the joint likelihood function to obtain the most likely estimates MMLE and RMLE.

Method B: Parametric non-linear regression
We �it a parametric regression model to the PGVnb values in each frequency band. We use a modi�ied version of the Campbell 1981 model

      

where β = [a, b1, b2, c1, d1, d2 ]T are regression coef�icients, Mi, Ri and PGVnb,i are the magnitude, hypocentral distance and observed peak velocities for the ith trace, respectively. Once the co-

ef�icients are determined, the probabilistic amplitudes for any parameter combination can be expressed as a likelihood function:

      

For a set of observed PGVnb values from a target trace, the most likely parameter combination can then be found by maximising the joint likelihood function.

Question to the reader: How are dependent likelihood functions optimally combined? The PGVnb values from neighbouring frequency bands are correlated and hence not independent. 

Can we use a free form mixture model by adding the likelihood functions? Feedback and discussion are welcome.            

Figure 4: Same as Figure 4, but for a M3.2 record at 31km hypocentral distance.
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M3.2 at 31km hypocentral distance, southern California

Figure 3: Example application of methods A and B to a M6.5 record with a hypocentral distance of 11km. Top row: Bandpass �iltered seismograms with increasingly low corner frequen-
cies (from left to right). Middle row: 50% contours of relative log-likelihood functions from method A. Bottom row: relative linear likelihood functions of method B. The last �igures of the 
middle and bottom rows show the joined relative likelihood functions from all bands and the inferred maximum likelihood estimates (yellow stars) and catalog values (white stars).
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M6.5 at 11km hypocentral distance, Japan

iii. Parameter Inference
In the following we determine how diagnostic the PGVnb  observations are for the two parameters  magnitude m and hypocentral distance r. We present two different algorithms with 

which the parameters can be estimated in real-time for any waveform trace. Figures 3 and 4 illustrate the two algorithms with a near-�ield record of a large event (M6.5 at 11km) and 

a more distant record of a small event (M3.2 at 31km).

ii. Data & Filter Bank
We measure the frequency content of seismic waveforms in real-time with the goal of inferring the two source param-

eters magnitude and hypocentral distance. We have compiled an extensive near-�ield record waveform data set with three 

component records including

    broadband and strong motion data from southern California (SCSN)

    strong motion data from Japan (kNet & kikNet)

     digital NGA West1 data
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Figure 1: Frequency response of the nine bandpass �ilters.

We process a total of  ~160,000 waveform traces with 

magnitudes 2 ≤ M ≤ 7.9 and hypocentral distances ≤ 

100km from shallow crustal earthquakes. We pass all 

traces through the �ilter bank, a set of 9 octave wide 4th 

order Butterworth passband �ilters between 0.1 - 48Hz 

(Figure 1). This �ilter bank operation is a class of wavelet 

transform and it optimally solves the trade-off between 

time and frequency resolution. Low frequencies are de-

layed more than high frequencies (Figure 2), but the 

delay is the minimum that is physically possible. This 

way the information from each frequency band becomes 

available at the earliest possible point in time.

For each waveform trace of the data set, we obtain nine 

bandpass �iltered seismograms, on each of which we 

measure peak absolute amplitudes as a function of time 

since the p-wave onset. These maximum absolute ampli-

tudes we term narrow band peak ground velocities, 

PGVnb. 
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Figure 2: Impulse response of the nine bandpass �ilters.                          

i. Introduction
Earthquake Early Warning (EEW) is a race against time. The longer it takes to detect and characterize an ongoing event, 

the larger is the blind zone - the region where a warning arrives only after the most damaging ground motion has oc-

curred. The problem is most acute during destructive medium size earthquakes, where damaging ground motion is con-

�ined to a small zone around the epicenter. An ideal EEW algorithm which is fast enough to reliably provide relevant 

alerts for such scenario events would have to exploit available real-time information in a more optimal way than what is 

currently done by existing algorithms. In this study we present a novel approach to EEW which fully mines the broad-

band frequency content of incoming waveforms. We extend the Virtual Seismologist method of Cua and Heaton 2007 to 

an evolutionary EEW algorithm that starts parameter estimations at the p-wave onset on the �irst station. We use a �ilter 

bank with minimum phase delay �ilters which allows us to use frequency information from each frequency band at each 

triggered station at the earliest possible time. With an extensive dataset of near-�ield earthquake waveforms we demon-

strate the potential of such a processing scheme to infer earthquake source parameters in real-time with high accuracy, 

starting from observations at a single station.


