Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

Roman Hüppi¹, Jens Leifeld¹, Albrecht Neftel¹, Franz Conen², Johan Six³

¹ Agroscope, Climate and Air Pollution Group, CH-8046 Zurich; www.agroscope.ch

² University of Basel, ³ ETH Zurich, Sustainable Agroecosystem Group

Introduction

Biochar, a pyrolysis product of organic residues, is considered to improve soil fertility^[1], sequester CO₂^[2] and to reduce greenhouse gas (GHG) emissions^[3] from arable soils. Biochar has the ability to alter the rates of N-cycling in soil systems^[4].

Yet, neither the magnitude nor the mechanisms of these effects are understood. Our experiments have shown reduction of N₂O emissions from temperate soils of about 20 % in the field and from 20 to 90 % in the laboratory following biochar application^[5].

Aims of the project

- · Understand how biochar application influences crop productivity and N-cycling to improve the use of biochar in agriculture (\uparrow productivity and \uparrow N-use efficiency).
- · Quantify the effect of biochar on N2O emissions and yield in two temperate soils.

Experimental

Soil A (sandy loam):

- sand, silt, clay: 57;25;18 %
- Soil B (silt loam): • sand, silt, clay: 27;54;19 %
- C/N: 8.5, pH: 5.3
- Climate:
- C/N: 9.3, pH: 6.3 Lysimeter system:
- mean precip.: 1042 mm
- 0.6 m diameter • n = 4, soil depth: 0.8 m

Gaseous loss as ¹⁵N₂O

- mean air temp.: 8.5 °C
- **Biochar**

Green waste biochar pyrolysed at ~750°C for 25 min

C [%]	N [%]	H [%]	O [%]	рН	SSA[m ² g ⁻²]
67.8	0.7	1.1	8.3	13.1	226.4

Sieved < 3 mm

FNSNF

FONDS NATIONAL SUISSE

- · 20 t dry weight per ha
- ~ 10 cm deep incorporation by hand

Fig 1: ¹⁵N fluxes traced in the lysimeter system

Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Results

Results from first year of winter wheat (Triticum aestivum) cropping.

Fig 2: N-balance of applied 170 kg-N/ha measured in different compartments, error bars indicate standard errors from 4 replicates of each soil type * biochar/control treatment

Fig 4: Grain yield in dt/ha from the first year. No significant differences among treatments, but high variability and in general low yield.

Fig 5: Mean N₂O emissions from 17 measurements between May and November 2013. Significant reduction in both soils of about 20 % by biochar

Conclusions

- No significant biochar effect on grain and straw yield, leachate-N, soil-N content or fertilizer uptake
- N-use efficiency was not increased by biochar •
- 20 % reduced N₂O emissions by biochar •
- Mid term biochar effects will be studied in 2014

References: [1] Jeffery et al. 2011. [2] Lehmann et al. 2006. [3] Singh et al. 2010. [4] Clough et al. 2010 [5] Felber et al. 2013.

Schweizerische Eidgenossenschaft Confédération suis Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs,

Swiss Confederation

Education and Research EAER Agroscope