Overriding plate thickness control on subducting slab curvature
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Plots show minimum radius of 3. MODEL SYSTEMATICS
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4. DEPENDENCE ON INITIAL GEOMETRY

viscous SP
Subducting plate thickness (hSP) 300 g Models with variable initial
2807 . —P radius of curvature
We observe a linear dependence of R,,,;,, on T o = -
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Overriding plate thickness (h,,) 7. CONCLUSIONS
CfJnverser, Rmin.has no depe‘ndence on hy,, for 1) Plasticity reduces the dependence of slab curvature (R) on subducting plate
viscous subducting plates, with a constant thickness, in line with the apparent lack of correlation of those parameters on
R, of 225-235 km observed. However, the Earth.
add.lt.lon of plashuty g""?s risetoa .strong 2) Plasticity introduces a positive scaling between R and overriding plate thickness
positive scaling. As the yield stress is reduced (hop)-
(i.e. the area of yielding increases), the N _
strength of this dependence increases 3) Such a positive correlation between R and h,, appears to be present on Earth.

Plasticity, in conjuction with overriding plate structure, plays a crucial role
in dictating subducting plate curvature.
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