Fate of increased nitrogen deposition in humid sub-tropical forests in Southern China

^{1,2,3}Geshere Abdisa Gurmesa, ¹Per Gundersen, ³Xiankai Lu, ³Jiangming Mo

¹Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark ²Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark ³Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

Introduction

- Increased N deposition can result in N saturation when the biotic demand for N is exceeded, leading to increased rates of N cycling and losses of nitrate (NO_3) , soil and surface water acidification, plant nutrient imbalances, even forest decline.
- But, these effects depend on the fate of deposited N
- The fate of increased N deposition is less understood in humid tropical forests, which in China recieves among the highest N depositions in the world

Objectives

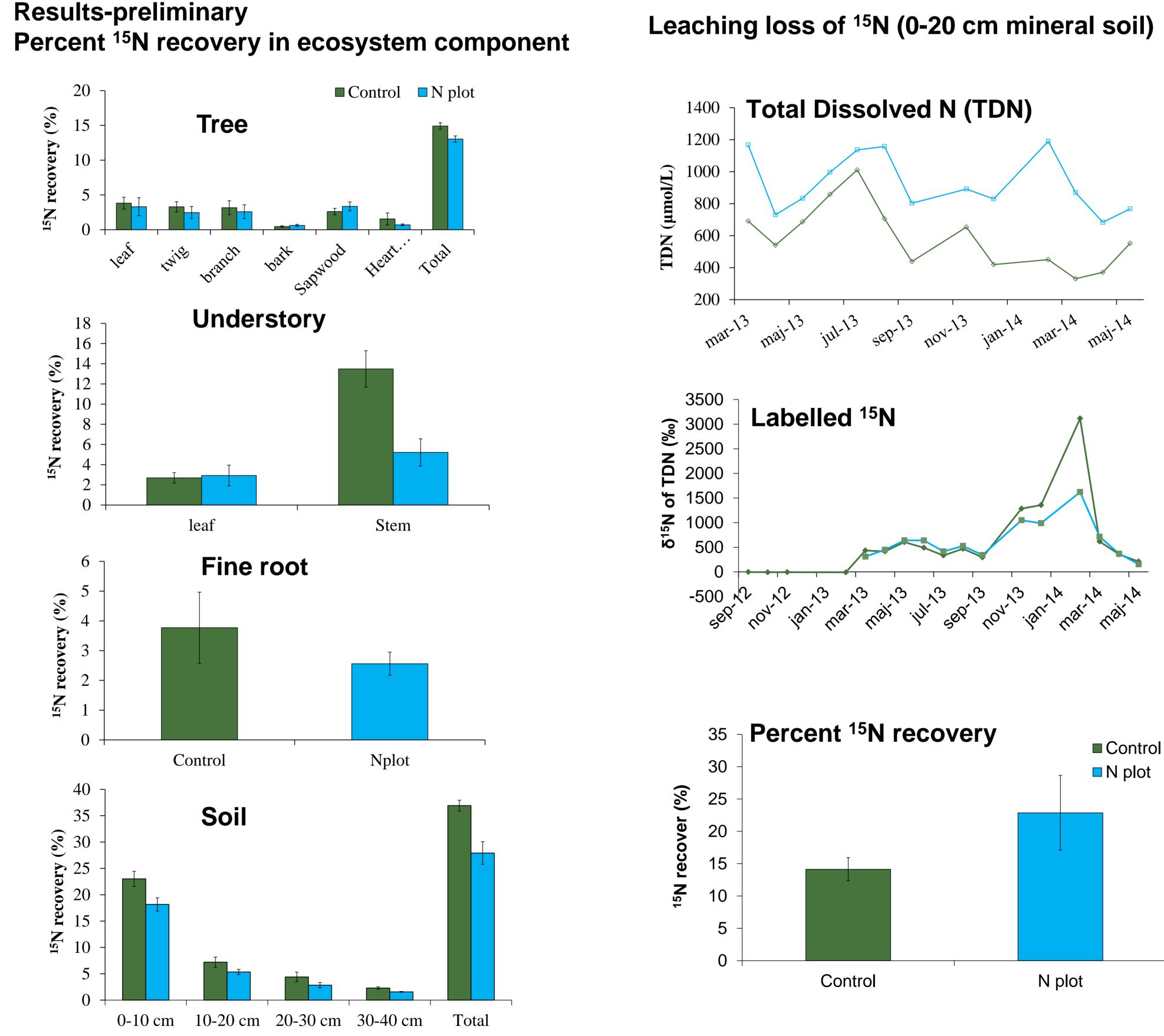
- investigate the fate of deposition N in tropical forest ecosystems and especially to understand the N retention mechanisms in these forest using isotopic labelling techniques (¹⁵N)
- to compare the fate of N in the humid tropics with that found in similar experiments in temperate forests

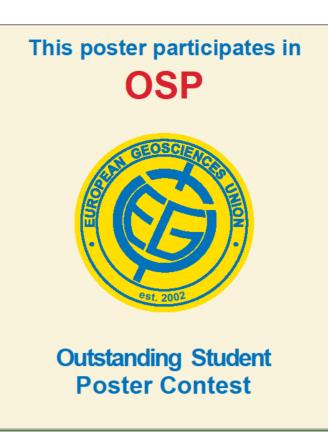
Study site

- Sub-tropical mixed broadleaved forest, regional climax (~400 yrs old)
- Precipitation 1927 mm.
- High nitrogen deposition of 30 -73 kg N ha⁻¹ yr⁻¹

Experimental design and sampling

- A nitrogen addition experiment established in 2004
- Two levels of N deposition: Ambient and 50 kgNha⁻¹yr⁻¹
- Stable isotope technique: ${}^{15}NH_4{}^{15}NO_3$ -tracer addition over 1 year
- Sampling of major ecosystem pool i.e. all plant component and soils, fluxes.
- Quantifying the recovery (fate) of the added tracer using the following equation:


¹⁵Nrec% = $m_{\rm f}$ (atom % ¹⁵N_f - atom % ¹⁵N_i) / $m_{\rm f}$ (atom % ¹⁵N_f - atom % ¹⁵N_i)


where ${}^{15}N_{rec}$ = Percent of ${}^{15}N$ tracer recovered in the labeled N pool; m_f , = N pool of each ecosystem compartment (kg N/ha); atom% ${}^{15}N_f$ = atom percent ${}^{15}N$ in the labeled N pool; atom% ${}^{15}N_i$ = atom percent ${}^{15}N$ in the reference N pool (i.e. natural ${}^{15}N$ abundance); and atom% ${}^{15}N_{t}$ = atom percent ${}^{15}N$ of added tracer

References

Nadelhoffer K. J., Colman B. P., Currie W. S., Magill A., Aber J.D., 2004. Decadal-scale fates of ¹⁵N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). Forest Ecology and Management **196**, 89-107 Schleppi P., Bucher-Wallin I., Siegwolf R., Saurer M., Muller N., Bucher J.B., 1999. Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added ¹⁵N. Water, Air and Soil Pollution 16, 129-134. Tietema A., Emmett B. A., Gundersen P., Kjonaas O. J., Koopmans C. J., 1998. The fate of ¹⁵N-labelled nitrogen deposition in coniferous forest ecosystems. *Forest Ecology and Management* **101**, 19-27 Zak D.R., Pregitzer K.S., Holmes W.E., Burton A.J., Zogg G.P., 2004. Anthropogenic N deposition and the fate of ¹⁵NO₃ in a northern hardwood ecosystem. Biogeochemistry 69, 143-157

Pool/flux	Percent ¹⁵ N recovery	
	Control	N plot
Plant	34.9	23.7
Soil	36.9	27.9
0-20 cm soil solution	14.1	22.9
Total recovery	85.9	74.5

Discussion and conclusion

- Percent ¹⁵N recovery
- Plant uptake and soil immoblization of added N is reduced under increased N deposition (N plot) possibly due to soil acidification and leaching loss of added N
- N addition was found to cause higher N leaching and soil acidification in the forest
- More ¹⁵N in soil solution was recovered in N plots than in control plot indicating of leaching of added N
- Plants and soils retained similar amount of added ¹⁵N which is
- different from temperate forests where soil tended to retain more

Incomplete ¹⁵N tracer recovered

- Incomplete recovery of the added ¹⁵N could be realted to: • Missing pools (not sampled) such as big roots, few undestory vegetation species and deeper soil layers Losses through leaching below 20 cm, surface runoff, and denitrification

- Long term fate of added N
- denitrification

Summary of the N fate

Future perspective

• Full quantification of losses from the system including

