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Introduction
Mixed-phase clouds, ubiquitous at temperatures between ∼−35◦C and 0◦C, contain both su-
percooled liquid droplets and ice crystals that possess markedly different optical properties and
lifetimes in the atmosphere. Thus, the Earth’s energy budget and equilibrium climate sensitivity
(ECS) will delicately depend on their relative proportions. An outstanding weakness of micro-
physical schemes is global climate models (GCMs) lies in the arbitrariness of their tuning param-
eters, which are notoriously fraught with uncertainties.

Objectives
1. Probe a 6-D space of cloud microphysical parameters in NCAR’s CAM5.1 model to determine

how various microphysical processes impact the proportion of liquid to the total amount of
liquid and ice in mixed-phase clouds (supercooled cloud fraction (SCF))

2. Obtain three sets of parameters that are able to “best” reproduce observations of SCF from
NASA’s CALIOP instrument to implement into fully-coupled CESM1.0.5 simulations that will
yield ECS estimates (Part II of this project).

Quasi-Monte Carlo Sampling of a 6-D Parameter Space
256 parameter combinations were selected within their specified ranges (Table 1) via Quasi-Monte
Carlo (QMC) sampling. The six parameters were assumed to have uniform probability distribu-
tions to further guarantee good dispersion. 256 CAM5.1 simulations (at 4◦×5◦ horizontal and 30
level vertical resolution) were run with these parameter combinations.

Process Investigated Relevant Parameter Default Value Investigated Range

Ice nucleation fin 1 [0,1]
WBF timescale exponent for ice epsi 0 [-6, 0]
WBF timescale exponent for snow epss 0 [-6, 0]
Ice crystal fall speed ai 700 s−1 [350,1400] s−1

Wet scavenging (stratiform clouds) sol facti 1 [0.5,1]
Wet scavenging (convective clouds) sol factic 0.4 [0.2,0.8]

Table 1: Description of the six selected CAM 5.1 cloud microphysical parameters modified in the 256 simulations
selected via QMC sampling, along with their investigated ranges.

Sensitivity Analysis
Application of a Generalized Linear Model (GLM) can used as a variance-based sensitivity anal-
ysis (SA) to quantify the individual and two-way interaction effects of each of the parameters on
the variance in SCF [1]. The GLM used in this study can be written as

Y i = β0 +
n∑
j=1

βj · p
j
i +

n∑
j=1

n∑
k=1

βj,k · pij· p
i
k + εi, εi

iid∼ N(0, σ2),

where pij represents the i-th realization of the j-th parameter, Y i represents the i-th response
variable, SCF, and βi and βj,k represent the coefficients of linear and two-way interaction terms,
respectively. Statistical significance (P<0.05) is evaluated via null hypothesis testing, which as-
sumes that the regression coefficients are zero.
Results for the GLM SA can be visualized in the form of heat maps (Figure 1). epsi and its in-
teraction with epss are the two most important contributors to SCF variance. fin has less of an
impact on SCF variance than expected. All other effects are essentially negligible.

Generalized Linear Model Results

Figure 1: Heat maps displaying the individual and two-way interaction effects of the six parameters using global
averages of SCF, time-average over the last year of simulation at the (left) −10◦C, (centre) −20◦C and (right) −30◦C
isotherms. Only statistically significant interactions are shown.

GLM results are separately displayed for the Southern Ocean (Figure 2). epsi accounts for most
of the contribution to SCF variance. epss also plays a significant role. fin does not play an impor-
tant role at the colder isotherms; however, is quite important at the −10◦C isotherm, where the
interaction between epsi and ai is also important. This implies that active ice nuclei (IN) in the
Southern Ocean at warm mixed-phase clouds temperature and the sedimentation speed of the ice
crystals they nucleate plays a significant role in SCF variance.
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Figure 2: Pie graphs of the contributions of the most important parameter effects between 58◦ and 90◦ according to
the GLM SA at the −10◦C (left), −20◦C (centre) and −30◦C (right) isotherms.

Best Matches
Out of the 256 simulations, we define the “best” match to be that with the lowest SCF score,
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Figure 3: CALIOP product-observed SCF (79 months) [2] (top) and their differences with CAM5.1-modelled SCF.

defined as the difference between the modelled SCF and that of CALIOP observations, normalized
by the maximum average value across all nine 20◦ latitude bands at a given isotherm.

The “best” (CESM-7) and “worst” (CESM-50) matches are shown in Figure 3 as their difference
with CALIOP-observed SCF. The QMC simulations all have a new ice nucleation scheme [3] and
modified detrainment scheme to increase SCFs, that reproduce CALIOP observations much better
than the default CAM5.1. The three “best” matches, with wide-spanning parameter ranges were
selected to implement in fully-coupled CESM1.0.5 simulations.
To get a sense of the parameter values that yield lower scores, the values were arranged into 16
bins, with their global cumulative scores arranged into box and whisker plots for epsi (Figure 4).
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Figure 4: Global cumulative SCF scores for epsi. The shape results from the fact that faster WBF timescales act in
the extratropics and high latitudes due to the modification in detrainment, while the opposite is true for the tropics.

Gregory Method Equilibrium Climate Sensitivity Estimates
Before the simulations equilibrate, preliminary ECS values can be calculated using the method of
Greogry et al. [2004] [4], which shows a wide range in ECS values for the three “best” matches
along with high and low limiting cases on IN (Figure 5).
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Figure 5: ECS estimates for all CESM1.0.5 simulations based on the Gregory Method. The relatively low R values
result from large internal variability in the simulations.

Conclusions
• epsi along with its interaction with epss, are by far, the two most important parameters that

influence variance in SCF. fin, the parameter that determines the fraction of dust particles that
are active as IN, has less of an impact than originally hypothesized. All other parameters and
their two-way interaction effects contribute negligibly to SCF variance.

• The three sets of six CAM5.1 parameter values that “best” match CALIOP observations of SCF
all have highly contrasting spatial distributions and a noticeable spread in ECS values.

Forthcoming Research
Actual ECS values will be calculated for all simulations. Global and regional radiative kernel
for various climate feedback mechanisms will be calculated for to shed light on the important
processes controlling ECS when cloud thermodynamic phase is more accurately modelled.
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