Effect of cloud microphysics on particle growth under mixed phase conditions

Lukas Pfitzenmaier¹, Y. Dufournet¹, C. Unal¹, H. Russchenberg¹, A. Myagkov², P. Seifert²

(1) Delft University of Technology, Geoscience and Remote Sensing, Delft, the Netherlands (2) Leibniz Institute for Tropospheric Research, Leipzig, Germany

1. Introduction

- Ice and liquid phase coexist within a mixed-phase cloud.
- The interaction of phases leads to an enhanced growth of the ice particles.
- Understanding those growth processes is important main processes for precipitation formation.
- Ground based remote sensing is able to capture such small scale microphysical processes processes can be identified studying radar Doppler spectra.
- Problem: limitation of the instrumental synergy to detect the super-cooled layers.
- Problem: Different particle population present within a height cross section \rightarrow Fall-streak correction (following the same particle population).
- \succ Tracking particle growth processes along the trajectory within mixed-phase using data based on ACCEPT campaign.

Analysis of the Composition of Clouds with Extended Polarization Techniques campaign:

Measurement during the ACCEPT campaign were done in cooperation with TROPOS, Royal Dutch Meteorological Institute (KNMI), Ludwig-Maximilian University Munich (LMU), Germany, and Metek, Germany, Oct – Nov 2014, Cabauw, the Netherlands. AIM: Observe and understand microphysical processes within mixed-phase clouds.

2. Main instruments

The Transportable Atmospheric Radar (TARA) of the Delft Technical University is an advanced FMCW radar profiler

- Height temporal (\geq 3 s) and spatial resolution (\geq 7.5 m)
- 3 GHz, λ =9.1cm

• 3 beam configuration

Fully polarimetric

• Doppler capabilities

UV Lidaı

- \rightarrow sensitive to large hydrometeors
- \rightarrow ice crystal
- \rightarrow retrieve 3D-wind vector
 - \rightarrow particle shape
 - \rightarrow particle dynamics, particle modes

Lidar data for the liquid-layer retrieval based on de Boer *et al.* 2009 [2]

+ Polly (Raman-Lidar) + Radiosondes

<u>Instruments</u>: Fully polarimetric, Doppler capable radars – Mira (Ka-Band, 35GHz) and TARA (S-band, 3 GHz), Raman lidars (PollyTX), UV-lidar, microwave radiometers, and radiosondes.

Shows the measurement setup of the ACCEPT campaign at the Cabauw experimental side for atmospheric research, Cabauw, the Netherlands.

5. Case study 16th October 2014 **3. Ice particle growth processes** Mean horizontal & vertical Doppler velocity Pristine TARA measured reflectivity, 16-10-2014 Defined Fast growth of ice Mixed phase cloud 6000 ice crystals 6000 shape Constant change of wind direction from crystals when falling **Detected liquid** Layer of super 190° (ground) to 250° (cloud top) 5000 layer from lidar 15 trough the liquid layer 5000F cooled liquid cloud droplets \succ increase of Z 10 **Particle** \rightarrow grow in size 4000 [dBZ] 4000 growth <u>ש</u> 3000 נו change polarimetric Reflectivity 3000 Undefined signature shape \rightarrow lose defined shape σ ¥ 2000∤ ₽ 2000 -10 4. Methodology of fall-streak tracking 1000 1000 -15 Fall-streaks are due to cloud dynamics effects. **-**20 15 -5 02:40 02:50 03:00 -10 10 02:30 20 wind speed [m/s] Time UTC Wind retrieval Zdr 1) Spectrogram at t₂ 1) Spectrogram at t₂ 1) Spectrogram at t₁ 1) Spectrogram at t₁ 3 beam configuration of TARA Differential reflectivity Differential reflectivity Reflectivity Reflectivity Retrieval of 3D-wind vector > Outputs: mean horizontal Doppler velocity, mean vertical Doppler

velocity, wind direction (every 3 seconds) <u>Assumption:</u> same dynamic conditions in all 3 beams Limitations: fare range, turbulent systems, small clouds

increased Doppler width (no wind shear) \rightarrow second particle mode \rightarrow vertical Doppler velocity increases

increased Doppler width (no wind shear) \rightarrow liquid layer detected \rightarrow vertical Doppler velocity increases \rightarrow GROWTH

increased Doppler width \rightarrow vertical Doppler velocity increases \rightarrow spherical shape \rightarrow RAIN

6. Conclusion and outlook

- On going work: Cloud dynamic correction of Doppler spectra
- Allow a better understanding of cloud microphysical processes.
- Further work: study microphysical processes using Doppler spectra information enhancing the detection of liquid layers and growth process studies

Acknowledgement:

The research leading to these results has received funding from the European Union Seventh Framework (FP7/2007-2013): Programme People, ITN Marie Curie Actions (2012-2016) in the ITaRS under grant frame agreement n° 289923.z And My colleagues for the collaboration.

Literatur:

Issues:

wind retrieval

[1] Shupe, M. D. *et al.* 2008 – A focus on mixed-phase clouds

- [2] De Boer et al. 2009 Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at tow highlatitude locations
- [3] Lanb and Verlinde Physics and Chemestrie of clouds ,2011
- [4] Fukuta et al. 1998 The growth of atmospheric ice crystals: A summary of findings in vertical super-cooled cloud tunnel studies

 d_{H} , d_{Z} wind direction correction factor

[5] Unal C. (2015) – High resolution raindrop size distribution retrieval based on the Doppler spectrum in the case of slant profiling radar. Accepted for publication in J. Atmos. Oceanic Technol

Delft University of Technology

Departement of Geoscience & Remote Sensing

Averaged profile of the wind retrieval as input – limitations of the

Corresponding author: I.pfitzenmaier@tudelft.nl

Wind shear is not completely resolved by the fall-streak