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Objectives- Research scope 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Penetrating Radar (GPR) 

Conclusions 
 Regression-based method error prediction performance is improved significantly with the increase of number of calibration cores 

 Both, the ALL and Finnish (PANK) model error prediction performance does not seem to be improved with the increase of number of calibration cores 

 A limited number (on the order of seven) of cores seems to be sufficient to yield acceptable error performance for all GPR-based algorithms   

Field experiment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Wave propagation

in the pavement

Radar 

signal

Voids

Pavement 

layers

GPR 

•Antenna transmits & receives electromagnetic energy 

•Reflection at boundaries between materials of different electric permittivity 

•Ability to store a molecular charge 

•The larger the difference, the greater the reflection 

•Travel time is measured 

•Subject to interpretation 
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an intelligent sensor technique that has led to a powerful Non-Destructive Testing 

(NDT) method for road pavement evaluation.  

Recent improvements in hardware and in particular software processing have 

contributed to the rapidly expanding popularity and usability of this technique in the 

pavement engineers community.  

GPR has been defined as both a technically feasible and promising method for the 

nondestructive, rapid, and continuous evaluation of in-situ asphalt pavement density 

based on electromagnetic mixing (EM) theory. 

The ALL model: 

 prediction of asphalt mixture density based on bulk electric permittivity as measured 

by the GPR, the dielectric properties of the asphalt mix materials, as well as other 

material information. 
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where:  

Gmm maximum specific gravity  

Gse effective specific gravity of aggregate  

Gb specific gravity of binder  

Pb binder content [%] 

εHMA electric permittivity of asphalt mixture 

εb electric permittivity of binder 

εs electric permittivity of aggregate 

Finnish (PANK) algorithm:  

 
prediction of asphalt mixture air voids based on bulk electric permittivity as 

measured by the GPR and determination of calibration coefficient.. 

1.3012* *
HMA

k 
Air Voids (%) = 272.93*e

 Regression-based algorithm:  

 

 Pavement Quality Indicator  

(PQI):   

 

prediction of asphalt mixture density based on bulk electric permittivity 

as measured by the GPR and determination of calibration coefficients. 

bρ  = a*e
*

HMA
b 

This approach is based on a 

novel toroidal electrical sensing 

field that is established in the 

material to be measured via a 

flat sensing plate.  

Density, or compaction degree, 

is measured by the response of 

the PQI's electrical sensing field 

to changes in electrical 

impedance of the material 

matrix, which in turn is a 

function of the composite 

dielectric constant of the paving 

material and the air trapped in 

the voids of the material.  

■ GPR measurements using 1 and 2 Ghz Antenna 

■ Estimation of HMA electric permittivity values (εHMA) 

■ In situ density measurements using PQI (electromagnetic method) 

■ Extraction of cores (in total 20) and determination in lab of surface 

layer density (SSD method)                                                        
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Data analysis and results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

A) Evaluation of number of calibration cores with 

respect to antenna frequency 
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                B) Assessment of in-situ compaction degree 
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In- situ density estimation method

1 Ghz 2 Ghz

 Implementing the GPR-based algorithms more accurate results were obtained using the 2 Ghz antenna 

 The PQI method was found to outperform the GPR-based methods, although this method  provides information 

only at discrete test locations 

 Generally, the GPR-based algorithms could be used to assess rather accurately the in-situ compaction degree of 

HMA pavement surface layer  


