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d Implementing the GPR-based algorithms more accurate results were obtained using the 2 Ghz antenna
d The PQI method was found to outperform the GPR-based methods, although this method provides information

Conclusions

1 Regression-based method error prediction performance is improved significantly with the increase of number of calibration cores only at discrete test locations
 Both, the ALL and Finnish (PANK) model error prediction performance does not seem to be improved with the increase of number of calibration cores  Generally, the GPR-based algorithms could be used to assess rather accurately the in-situ compaction degree of
A A limited number (on the order of seven) of cores seems to be sufficient to yield acceptable error performance for all GPR-based algorithms HMA pavement surface layer



