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Introduction Direct Method: Ageostrophic Velocity Long-term Variability of the Northward Ekman Transport

In the tropical Atlantic Ocean, Ekman transport is an important upper
layer component of the meridional overturning circulation. Wind
induced Ekman divergence drives upwelling and poleward surface flow,
forming the upper limb of the subtropical cell. Generally, in the absence
of direct current measurement, Ekman transport and the associated
heat and salt flux is derived from wind stress, SST and SSS based on the 150
satellite observation. In this study, Ekman transport is calculated using

direct velocity observation along two hydrographic sections and
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The meridional Ekman transport along two transatlantic sections is estimated using direct and
indirect method, respectively. The underway CTD data provide consistent results compared with
the regular CTD data in estimating the Ekman transport. At both latitudes, the Ekman transport
extended beyond the mixed layer. In the direct method, the Ekman flux is sensitive to the choice
of integral depth, the top of the thermocline appears to be a reasonable choice for the
integration of the ageostrophic velocity. Though in these two cases, the Ekman fluxes using the
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constant depth. data.
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