

UNIVERSITY OF GOTHENBURG CENTRE FOR MARINE EVOLUTIONARY BIOLOGY

SCIENCE EDUCATION IN A CHANGING WOLRD Creation of digital resources for science education

Géraldine Fauville, Sam Dupont, Michael Thorndyke

Geraldine.fauville@loven.gu.se

"Have you ever heard of the environmental problem of global warming?" (Pew 2006)

Perceived Seriousness of Global Warming (GlobeScan, 2000)

Very serious Somewhat serious

Which of the following is the main cause of the greenhouse effect? (GlobeScan, 1999)

Use of fossil fuels, such as oil, gas and coal
Air pollution from factories and cars
Loss of forests
Depletion of the Earth's ozone layer
Don't know

Early report

Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children

A J Wakefield, S H Murch, A Anthony, J Linnell, D M Casson, M Malik, M Berelowitz, A P Dhillon, M A Thomson, P Harvey, A Valentine, S E Davies, J A Walker-Smith

Lancet. 1998 Feb 28;351(9103):637-41.

MMR (measles, mumps & rubella) vaccine

% of MMR vaccination in UK

Measles cases in UK

91 %	1997-1998
80%	2003-2004
85%	2008-2009

56 cases	1998
1000 cases	2007

Science 8 August 2003:
Vol. 301 no. 5634 p. 804
DOI: 10.1126/science.1086726

< Prev | Table of Contents | Next >

BREVIA

Measles Outbreaks in a Population with Declining Vaccine Uptake

V. A. A. Jansen^{1,*}, N. Stollenwerk¹, H. J. Jensen², M. E. Ramsay³, W. J. Edmunds³ and C. J. Rhodes¹

What we have:

Poor understanding of scientific method Poor scientific knolwedge

What we need :

Scientifically literate citizens

What we do

- ✓ bring up-to-date and relevant science into the classrooms
- ✓ Understand main environmental issues
- ✓ Reflect upon their own responsabilities
- ✓ Develop critical thinking
- ✓ Discover the world of Science

Our methodology

Collaboration

Design

Implementation

Evaluation of the outcomes

with scientists

of digital tools

in the classroom

somes Offer lea ElEnglish speakers. English Scientífi Enviro sers in Feedbacksaton structures & testarts to fine-tune our resou

A 3 step curriculum

Step 1: What is OA and its impact on marine ecosystems? Virtual lab on OA

Step 2: How does OA impact us? Interactive discussion on OA

Step 3: What can we do? Carbon footprint calculator

Step 1

The virtual lab

pH 8,1: TODAY

pH 7,7: END CENTURY

✓ Lesson on OA

 ✓ Run experiment on sea urchin larvae

✓ Impact of seawater pH on sea urchin larvae development rate

A success...

EPOCA

... and it works

Increased knowledge on ocean acidification BUT You need a context

... and it works

Increased scientific thinking

Step 2

voicethread

Sea urchin larvae are smaller in low pH water

SO WHAT???

✓ Students can browse at their own pace

✓ Students can leave comment and question

Impact of ocean acidification on marine species and ecosystems

Smaller sea urchin larvae? So what???

Sam Dupont [sam.dupont@marecol.gu.se]

GÖTEBORG UNIVERSITY Marine Ecology – Gothenburg University The Sven Lovén Marine Research Centre Kristineberg

PART 1 – Summary of the Virtual Lab

PART 2 – How the data were collected & the full dataset

Same conclusion: Delay in development

PART 3 – Other species & SO WHAT?

Other species

Same trend in many other species

The facts

Ocean acidification will induce a delay in development in many marine species

Predators – 15% mortality EVERY DAY

Day 0 – 350 eggs

Predators – 15% mortality EVERY DAY

Day 1 – 306 embryos

Predators – 15% mortality EVERY DAY

Day 2 – 266 larvae

Predators – 15% mortality EVERY DAY

Day 3 – 231 larvae

Predators – 15% mortality EVERY DAY

Day 4 – 201 larvae

Predators – 15% mortality EVERY DAY

Day 5 – 175 larvae

Predators – 15% mortality EVERY DAY

Day 6 – 152 larvae

Predators – 15% mortality EVERY DAY

Day 7 – 132 larvae

Predators – 15% mortality EVERY DAY

Day 8 – 115 larvae

Predators – 15% mortality EVERY DAY

Day 9 – 100 larvae

Predators – 15% mortality EVERY DAY

Day 10 – 85 larvae

Predators – 15% mortality EVERY DAY

Day 11 – 72 larvae

Predators – 15% mortality EVERY DAY

Day 12 – 61 larvae

Predators – 15% mortality EVERY DAY

Day 13 – 52 larvae

Predators – 15% mortality EVERY DAY

Day 14 – 44 larvae

Predators – 15% mortality EVERY DAY

Day 15 – 38 larvae

Predators – 15% mortality EVERY DAY

Day 16 – 32 larvae

2 days of delay

Day 14

Day 16

1/3 less larvae reach juvenile stage

For 1 female = 1000 juveniles (on 3700)

PART 4 – Economical significance

indirect economic cost

Source of food

PART 5 – Things will change but it is complicated

Conclusions

Ocean acidification WILL have impacts on marine species and ecosystems

This can be dramatic (species extinction)

It is complicated and we need more data

BUT WE NEED TO ACT NOW

WHAT CAN YOU DO?

PART 6 – Human and CO₂ emissions

Humans release CO₂

How long is the "emission" train ???

1 car = 100 Tons of coal (80% C)

Chris Sabine – ASLO 2011

What can we do? = decrease CO_2 emissions

- Change our behaviours

Step 3

Carbon footpring

✓ students' life style

✓ Takes into account user's location

 \checkmark Synchronization behavior - emission

Take a "bad" citizen

Average:		26787 pounds CO2 per year
Your total:		38897 pounds CO2 per year

Teach him/her how to save energy

[e.g. turn off computers and electric equipment when not in use]

(
Average:		26787 pounds CO2 per year
Your total:		26380 nounds CO2 per year
Tour total.		20309 pounds 002 per year

Save energy AND save money

Spend it for...

1) i-phone, computer, etc.

Average:		26787 pounds CO2 per year
Your total:		27695 pounds CO2 per year

2) A city trip with Ryan Air

Average:		26787 pounds CO2 per year
Your total:		28384 pounds CO2 per year
		4

International Student Challenge

Get an international view on CO₂ footprint

Learn from each other

Envision solution together

International Students Carbon Footprint Challenge

20 classrooms in 13 countries:

France	Sweden
Italy	Lituania
Slovenia	Poland
Greece	
Germany	
	France Italy Slovenia Greece Germany

Other ressources

Education resources on OA

Type of resources	Evaluation
Passive information	
Movies	×
Document, fact sheet	×
Interactive information	
ask a scientist	×
Blogs	×
Voicethread	×.
Inquiry-based Learning	
Hands-on experiments	1
Global Learning	×
Creation of resources	×
Virtual hands-on exp.	

NEXT: Step in Scientist shoes

Department of Marine Ecology STIFTELSEN MARCUS OCH AMALIA WALLENBERGS MINNESFOND

Department of education, communication & Learning

Virtual lab on OA:

Run an experiment
designed by someone else
Short time activity

Scientist role play:

Go through the whole scientific processLonger time activity

NEXT: Step in Scientist's shoes

Step 1: virtual lab on OA Step 2: scenario of role play, choose the scientific field Step 3: what parameters to measure, what variables to test with limitations (number of measure, of animal...) Step 4: raw data to interpret Step 5: classroom discussion about the results Step 6: give a talk

Virtual world

Physical world

Please, join us !!!!

✓I2I homepage: <u>http://i2i.loven.gu.se/</u>

Carbon Footprint calculator: <u>http://i2i.loven.gu.se/NewFootprint/footprint.html</u>

✓ Ocean acidification virtual lab: <u>http://i2i.loven.gu.se/AcidOcean/AcidOcean.htm</u>

✓ Ocean acidification virtual talk: <u>http://voicethread.com/share/1978581/</u>

To contact me: geraldine.fauville@loven.gu.se

