Ocean Acidification, Marine Organisms
and the Marine Carbon Cycle

Uta Passow

Marine Science Institute
UC Santa Barbara

GIFT-AVH7 Penang, Malaysia June 2011



Carbon Cycle
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The Problem:
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The increase of carbon dioxide in the atmosphere as
determined from atmospheric samples at Hawai'i

(Keeling and Whorf 2004; red circles) and from air trapped in ice
cores (Neftel et al. 1994; green squares) as a function of time.

Discussion:

The basics: plants and animals and oil

Millero& DiTrollio 2010



Carbon Cyglg
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Carbon Cycle

65 million years ago (no humans)

These plants are now oil and coal.
When oil or wood is burned to use
the energy CO, is released.
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Carbon CyCIe What can we do?

* Reduce your CO, foot print
* Reduce gasoline / energy usage

* Use CO, neutral energy (solar/
wind..)

* plant trees

* Lobby for Reduction of CO, foot print
 Public transportation

* Development of “alternative
technology”
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Carbon Cycle
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Carbon Cycle
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The variations of carbon dioxide concentration
(in volume parts per million) since the Holocene,
as recorded in the Vostok ice core. ADAPTED FROM SIEGENTHALER ET AL.

Millero& DiTrollio 2010

800,000 years ago!



Carbon Cycle
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Carbon Cycle
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Carbon Cycle

Fate of Anthropogenic CO, Emissions (2000-200)

Le Quéré et al. 2009, Nature Geoscience; Canadell et al. 2007, PNAS, updated



Global Warming

Carbon dioxide (CO,) acts like
glass, it lets heat in but nor out!

Lets vote:
both same temperature
A warmer
B warmer

With more CO,

Hint: when you get into a car that was parked in the sun, is it hotter or
colder than outside?



Carbonate
Chemistry

We can already measure
the anthropogenic CO, in

the ocean in the upper
1000 m.

Figure 2
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Carbonate
Chemist

m pH sections' the Pacific (A) and Atlantic (B) oceans.
Bathymetry is shown in grey. The north-south transit
in the Atlantic is along 30 W and in the Pacific along 150° \V.
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Carbon Flux: Ocean- Atmosphere
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Teaching tools

Test the ability of seawater to take up CO, depending on the temperature.

http.//www.carboschools.org
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How does Temperature Affect the Solubility of CO; in Water?

Incraasing CO, concertrations i the ammosphere leads to incrsasing air temperanmes acd
consaquently, warming of the oczans. Does this increase of water temperature have a posttive
or nezatve feeddack to CO, concenmations in the atnosphere? Will this effect be s22non a
global or ragzonal basis?

Preparation time: 10 Minutss

Duration of activity: 15-20 memutes

Target age group: 11-14 years old / Grades 5-8

Application: Chemistry and Physics lessons’ Geography' After school
activity

Time for data analysis ’

and discusion: 20 mputes

Previous knowledge

required: Nons

Cost: 0.30 € for the effervescent tablets

Materials:

500 ml graduatad cylinder

Fupnsl

Petn dish cover

Transparent basin or an aquarium

Stand and Clanp

Ice cubes’ cold watsr
Water heater Warm water
Effarvescent (Fizz) tablets

Procedure:
1. Fill the basin kals-full with cold water. Place the stand beside the basin.

[

Fill the graduatad cylinder to the bnm with cold water and place it carefully upside
down in the basin Be sure that no water spills out of the cylinder so that no air bubdble
13 formed. To do this, cover the mouth of the full cylinder with a Pem dish Invert the
cylinder and immerse this iz the basin Remowe the Pem dish after the mouth of the
cylinder is alrsady underwater. (Younger pupils may need assistance here)



Carbon
Chemistry

As atm. CQO, increases
*DIC in seawater increases
* pH decreases

co,
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Carbon
Chemistry

Ocean acidification




Carbon
C hem Iskmlved Inorganic Carbon in Seawater

DIC = CO, +HCO; + CO,>
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Keerwvasser
[DIC] - 2000 wmol kg
[CO,]-10-15 pmol kg™

4 = b ?- & q 10 11 12
As pH decreases ™

 DIC increases

* Composition of DIC shifts (Impact cells as it matters what type of ion they
have available)

0



Biological
Impacts

Not much question that ocean acidification is happening!
The question is how the marine ecosystems react to this.
* Stress
* Acclimatization
* Adaptation

Biological Impacts of Ocean Acidification
&

How the ocean works in 3 slides!
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Dinoflagellates




Zooplankton —

Episodic
appearance:
2 d reproduction

Life cycle = 1 year

copepods

pteropods

Krill



Food webs
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Photosynthesis

Photosynthesis increases!

Primary production increases

Not for all organisms!
Very temp. sensitive

7

Biomazs allocation (g FW shoot-1)

26 85 1123
[COz(aqi] (pM)

Fig. 4. Zostera marina. Biomass allocation (g FW shoot™)

arniory] Toots, rhizomss and lsaves after 1 yr growth under CO,

enrichment, plotted as a function of COOJagl concentration

for {a) light-replete and (k) lght-limited treatments. hMean

rhizome bicmass (@) with fited line shown for light-replets
treatments it = 0,99, p <0,01)



Photosynthesis

Resea'f"

Problem

How will lowered pH inthe oceans
effect single celled algae?

Procedure

F

/ i
*Results and conclusion £
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TJ, San Marcos High School



Photosynthesis

Phytoplankton Species composition shifts!
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Calcification

SHELLED ORGANISMS and crystal structure of CaCO§

Calcite Aragonite Mqg-Calcite
Coccolithophorids Pteropods Coraline Algae
Foraminifera Corals cold water Corals
some Bivalves most Mollusks
Sponges

Ecinoderms
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Calcification

What happens when additional CO, enters the ocean?

Water + CO, makes the ocean more sauer (acidic) like vinegar or lemon juice

A B

Lets look at an experiment:
St ot
What happens to a
A sea shell in water
B sea shell in vinegar

Hint: remember what happened to your egg when you put it in vinegar!



Calcification

Waters that are naturally acidic

FIGURE 14: P. caerulea and H. truculus showing severely eroded, pitted shells in naturally acidified areas of
minimum pH 7.4. Source: Hall-Spencer, 2008*%.



Calcification

Pteropods

£ "J-r! : A )
Aperture (~7 pm): Normal shell: no
ﬂd\_{uncgd dissolution dissolution

Fabry et al.



Calcification — potential consequences

Ca Predominantly planktivorous
Pacific salmon (encircled)

Image Courtsey: NOAA

A SWIMMING PTEROPOD, LIMACINA HELICINA




Calcification
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Calcification

Calcification decreases
in many organisms

Coccolithophorids

Gephyrocapsa oceanica Malformed liths at high CO,



Calcification

Phytoplankton

Coccolithophores

Huge blooms visible from space

18Ky 15. 7KK iU Bees




Nitrogen Fixation

Nitrogen fixation: Biological process by which
nitrogen (N,) is converted into ammonia. This
process is essential for life (amino acids, proteins)
contain N.

Some bacteria, especially cyano-bacteria can fix
nitrogen. Some plants have a symbiontic
relationship with such bacteria (lupines,
peanuts).

Cyanobacteria common in surface ocean.



THE MARINE NITROGEN CYCLE
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Nitrogen
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NH} Degradation

Figure 1. Major chemical forms and transformations of nicrogen in the ocean. The
various chemical forms of nitrogen are plotted versus their cxidation states. Here,
we consider the potential effects of increased ocean pCO, on three of the critical
transformations within the N cycle: N, foation (red arrow), nitrification (blue
arrows ), and denitrification (green arrow).




Nitrogen Fixation

N-Fixation:

Percent increase in N-
fixation of 7 different
strains of Trichodesmium
spp. under at future (750

ppmV) vs. current CO, :
levels. Z 120]
g 100 4
g 80 1







Calcification/ Reproduction

Precipitation of oyster shell after settlement (benthic)

Reproductive
J70 ppmV pr(?blems at
Vs 380 Oyster farms
Shell 16% less could be solved
N by adjusting
precipitated carbonate system
Size @ (% less
settelment

Size after 42% less
4-5 days




Calcification/ Reproduction

Sea Urchin

780 — 1200 ppmV vs. 380 ppmV
Calcification of larvae: (ot 0. scale)

25% of ambient

development of
free-swimming
larva

Rudiment forms
and larval organs
Echinopluteus resorbed
(plankton)

e

o eggs brooded developmen
by female into adult

egg + N
sperm S S
released —— 7% /;1

metamorphosis
and settlement
to sea-floor

adult (benthic)



Response to Increasing CO,

a b C d

Physiclogical Species :
response Major group studied ‘h“““‘=~=_| — | ] /\
Calcification
Coccolithophores' 4 2 1 1 1
Planktonic Foraminifera 2 2 - - _
Molluscs 4 4 - - _
Echinoderms' 3 2 1 - -
Tropical corals 11 11 - - -
Coralline red algae 1 1 - - -
Coccolithophores® 2 - 2 2 -
Prokaryotes 2 - - 1 -
Seagrasses 5 = - - -
i = Cyanobacteria 1 - 1 - -
e Molluscs 4 4 - - -
Echinoderms 1 1 - _ _

1) Increasad calcification had substantial physiological cost; 2} Strong interactive aflects with nutnent and trace metal availability, light, and

temperature; 3 Under nutrient replete conditions.

Calcification, Reproduction: decrease with higher CO2,
Photosynthesis, N fixation increase, or remain constant




Marine Biological
Carbon Pump!

Particle Transport
via sinking of organic matter!

Carbon pumped against a
gradient into deep ocean.
Removed from atmosphere for
around 1000 years till deep water
comes up to the surface again

Strengthening the pump:
more uptake of carbon by
ocean

PHOTIC ZONE

ORGANIC CARBON Puwmp
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Marine Biological Carbon Pumps!

Or ganic carbon pump Calcium carbonate pump

At mosphere

Calcium Carbonate or counter pump: counter intuitive



thophore

Ccoccol

Dinoflagellates

1a

Cyanobacter




Sources and Sinks in PgC/yr, actual and projected
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Temperature & Stratification

Growth conditions
- [COZ]aq/pH/Q

: today Year 2100
- Temperature increase

pCO, 370 ~750 patm

- light regimes

—————

~T8— ——

- nutrient availability

irradiance
Overall photosynthesis
decrease observed.
That could be a real
problem as phytoplankton
make up almost 50% of
global photosynthesis.




Ocean Acidification

IS happening

increase in DIC

decrease in pH

decrease in carbonate ions leads to more corrosive waters for
calcification

increase in CO, can positively effect photosynthesis

Biological Reactions to OA
Ocean acidification at the organism level tends to lead to

. increase in photosynthesis — but temperature effects change th
. increase in N-fixation — but iron availability important

. decrease in calcification — some species survive without shell

. decreased reproduction: benthic calcifiers (larvae vulnerable)

Variability is high
genetic variation
many interdependent processes



A challenge!
YES we CAN!

Think outside the box

Tipping points in society: smoking

Success stories: acid rain, DDT

Social sciences — cartoons

Religious leaders = steward ship of the earth




Useful Websites

http://carboncycle.aos.wisc.edu/carbon-budget-tool/

http://oceanacidification.nas.edu/

http://www.youtube.com/user/PMLAdministrator?feature=mhee#p/a/u/1/FSw_FgpZkVY
http://oceanacidification.wordpress.com/
http://www.youtube.com/user/PMLAdministrator?feature=mhee
http://cisanctuary.org/acidocean/

http://pmel.noaa.gov/co2/story/Education

http://www.epoca-project.eu/index.php/what-do-we-do/outreach/rug/oa-questions-answered.html

http://www.oceanacidification.org.uk/



Questions?




THANK YOU!




-10

Figure 1. Past and contempory variability of marine pH. Future predictions are model derived values based
on IPCC mean scenarios (from Turley et al, 2006. Cambridge University Press, 8, 65-70).




N-fixation by Trichodesmium sp.
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