

Man is descended from a worm but from which sort of worm?

Guillaume Balavoine Institut Jacques Monod CNRS / Université Paris Diderot

The bilaterians: complex animals

The deeper branches of the animal tree: sponges, cnidarians and comb jellies

NATIONAL BESTSELLER

Wonderful Life

The
Burgess
Shale
and the
Nature
of
History

STEPHEN JAY GOULD

The Cambrian explosion (540-505 Ma)

Chordates already there back in Cambrian time!

Haikouella

euconodont

Complementary DNA mass sequencing

A simplified tree of animal life

Were our ancestors larvae?

Controversial Precambrian microfossils (Dushantuo)

« cnidarian gastrulas » Chen et al., 2002 « Micro-Bilaterian » Chen et al., 2004

Were our ancestors flatworms?

The acoel Convolutriloba

Anatomy

The acoels : are they the deepest branch of bilaterians ?

Or a divergent secondarily simplified offshoot of the deuterostomes?

The first « architect genes » discovered: the homeotic genes of the fruitfly Drosophila

Normal fly head

Fly head in an Antennapedia mutant

Four-winged fly: *Ultrabithorax* mutant

Edward B. Lewis

Nobel Price 1995

- **♦** Homeotic genes are organized in complexes on the chromosome
- ♦ Homeotic genes are expressed according to the rule of colinearity: they influence segment shape along the anterior/posterior axis in the same order as they are found in the chromosome

Homeotic genes code for transcription factors: proteins that bind to chromosomal DNA and regulate genes nearby

Expression of homeotic genes in a fly embryo revealed by fluorescent staining

The Hox/homeotic clusters of the fly and vertebrates are homologous

Composition of the *Hox* gene family in the animal tree

- Bilaterians typically have more than 10 Hox genes
- Cnidarians have few Hox genes of derived types
- Sponges have no Hox genes

Hypothetical *Urbilateria* Bauplan (Carroll et al., 2001)

	4	4	4		• 4 •	
56	amenta	ation, i	metameris	tm or ser	iation	
	91110116		Hotalliolic		Idil	

The most metameric of all: annelids

Metameric organization of a nereididae

- segmented trunk
- paired appendages (parapodia)
- metameric nephridia
- metameric circulatory system
- ventral nerve cord = chain of ganglia
- metameric coelom
- metameric muscles

Diversity of annelids

Segmentation: the arthropods

Segmentation in vertebrates

vertebrae

spinal nerves

trunk muscles

Segmentation in vertebrates The trunk development

Segmented mollusks

Wanninger & Haszprunar, 2002

Acaenoplax, Silurian

Sutton et al, 2001

Segmentation genes in the fruitfly

Maternel morphogens

Gap genes

Pair-rule genes

Segmental polarity genes

Expression of the gene engrailed in a fly embryo

Segmentation genes with conserved functions in arthropods

Damen, 2002; Janssen et al, 2004; Pechmann et al, 2009

The life cycle of *Platynereis dumerilii*

Segmentation genes in the annelid *Platynereis*

Saudemont, Dray et al, Dev Biol, 2008

Common segmentation genes in annelids and arthropods

Common segmentation genes in arthropods and vertebrates

Oda et al, 2007

