

The Earth System

Space gravimetry

Satellite altimetry

Satellite altimetry: how does it work?

Global coverage of the Earth in 10 days

Permanent undulations of the sea surface

The geoid

Earth's internal structure (from V. Courtillot)

GRACE space gravity mission

(launched in March 2002): Spatio-temporal change of Earth gravity field

Time resolution < 1 month Spatial resolution <400 km

Temporal variations

• surface mass redistributions :

atmosphere, oceans, land waters, ice sheets

Post-Glacial Rebound

+

A few examples of scientific applications

Evolution of errors of altimetry systems

cm

The marine geoid mapped by satellite altimetry

Marine geoid – Indian Ocean

Seafloor topography (South West Pacific)

High-precision altimetry

_ Topex/Poseidon (1992-2006)

JASON-1 (2001-) JASON-2 (2008-)

Important achievements in oceanography with high-precision satellite altimetry

20 000 years ago....

Sea level variations over the last 140 000 years

Last glacial cycle

Mean sea level variation during the past 6000 years

Lambeck, 2006

Global mean sea level rise during the 20th century

Global mean sea level between 1993 and 2008 (Topex/Poseidon and Jason-1 satellites)

22.12.2008 : cycle 599

Present-day Sea Level Rise:

1950-2000: 1.7-1.8 mm/yr 1993-2008: 3.0-3.5 mm/yr

Acceleration? Decadal fluctuation?

Causes of sea level rise....

- Thermal expansion of sea water due to ocean warming
- Ocean mass increase due to water addition from land ice melt and terrestrial waters stores

Ocean temperature data collected during the past 50 years

Global mean sea level rise during the 20th century

Observed sea level and thermal expansion since 1993

Comparison between spatial patterns in sea level trends observed by satellite altimetry and estimated by the ORCA025 ocean circulation model (no assimilation) (1993-2001)

Lombard et al. (2007)

Land ice

Contribution of glacier melting to sea level rise

Ice sheets Contribution (recent years)

Greenland

Rignot & Thomas, 2002 Thomas et al., 2004 Krabill et al., 2004 Zwally et al., 2005 Johanessen et al., 2005 Davis et al., 2005 Rignot & Kanagaratnam, 2006 Rignot et al., 2006 Velicogna & Wahr (2005, 2006) Ramillien et al. (2006) Chen et al. (2006) Lutchke et al. (2008) Cazenave et al. (2008) Wouters et al. (2008)

.

Antarctica

Greenland ice sheet

Crevasses in ice...

Role of ice shelves

Change in ice thickness measured by laser and radar altimetry

IPCC, 2007

Space gravimetry : GRACE mission (2002-) → Ice mass change

Greenland and Antarctica mass balance

Ice mass loss measured by remote sensing techniques

Sea Level Budget

1993-2003 (IPCC AR4)

Sea Level Rise since 2003

Surprises!...

Observed sea level and thermal expansion since 1993

Part of the answer with GRACE....

Can we explain recent sea level rise by land ice only?

Future sea level rise

IPCC AR4, 2007

Monitoring terrestrial waters by satellite

© CNES 2000

Causes of spatio-temporal change of the continental water cycle

Climate variability (natural and anthropogenic)

•Direct human effects:

- groundwater mining
- irrigation
- dam building
- urbanization
- deforestation
- change in land use

Applications

- Weather forecastClimate modelling
- •Water resources management
- •Natural Hazards:
 - floods, droughts
- ·Agriculture (irrigation)
- Hydro-electric energy production
- Fluvial navigation
- ·Land use and management
- Carbon cycle
- Sediment transport
- ·Sea level change
- •Etc.

Status (in March 2007) of monthly discharge and stage data in the Global Runoff Data Center (GRDC)

Global Runoff Data Center

Distribution of GRDC station data over time (1900-2007)

Remote sensing technique	Soil moisture	Ground waters	Snow pack	Surface waters (extent, level, volume, discharge)
Visible Imagery	Extent		Extent	Extent
Active microwaves (Radar imagery)	Extent Volume		Extent	Extent
Passive microwaves (Radiometry)	Extent Volume		Extent Thickness	Extent
Altimetry				Level Discharge (indirect) Volume (if combined with imagery)
Space gravimetry	Mass	Mass	Mass	Mass

ARAL Sea

Lake Sarykamish (Asie)

Lacs d'Afrique de l'Est

Kariba

Zambeze (VS)

Lac Victoria

Example of altimetric coverage over rivers

Problems....

Satellite Altimetry Coverage

Mississipi

Congo

(Hydroelectric energy production)

Delta of Lena River (Siberia)

Wetlands in Quebec ← (Canada)

-300 -260 -220 -180 -140 -100 -60 -20 20 60 100 140 180 220 260 Hauteur d'eau equivalente (mm)

Total land water storage November 2003

-200-180-160-140-120-100-60-60-40-20 0 20 40 60 60 100 120 140 160 180 200 Equivalent-water height (mm)

Water Gap Hydrological Model
Change with time of land water storage from GRACE

Land water storage change (trend map) from GRACE 2002-2008

Vertically-integrated water volume change from GRACE

Ground waters (GRACE minus surface water volume)

HTDROWED

A service to monitor lakes reservoirs, rivers and wet lands http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb

HYDROWEB

