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Late quaternary history of climate and greenhouse
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Mauna Loa Monthly Mean Carbon Dioxide
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Atmospheric carbon dioxide monthly mean mixing ratios. Data prior to May 1974 are from the Scripps Institution of Oceanography (SIO,
). data since May 1974 are from the National Oceanic and Atmospheric Administration (NOAA, red). A long-term trend curve is fitted

to the monthly mean values. Principal investigators:

Dr. Pieter Tans, NOAA CMDL Carbon Cycle Greenhouse Gases, Boulder,

Colorado, (303) 497-6678, pieter.tans@noaa.gov, and Dr. Charles D. Keeling, SIO, La Jolla, California, (616) 534-6001,

cdkeeling(@ucsd.edu.



A stable carbon cycle during the Holocene
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Humans mine fossil C and perturb the natural cycle
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Atmospheric accumulation = drives global warming
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Atmospheric accumulation = drives global warming
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Le cycle du carbone pendant |I'Anthropocene
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The carbon cycle offers a discount of 50% on the
additional greenhouse effect
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Where does the fossil carbon go ? (2000-2006)

45% of all CO, emissions accumulate in the atmosphere

The Airborne Fraction

The fraction of the annual
- | anthropogenic emissions that
| remains in the atmosphere

53% were removed by natural sinks
Ocean removes _ 24% Land removes _ 30%

Canadell et al. 2007, PNAS



Big issues

* Where does the fossil carbon go ?

* What are the physical / chemical /
biological processes

* Where will the fossil carbon go in
the the future



Anthropogenic C Emissions: Fossil Fuel

2000 Fossil Fuel: 8.4 Pg C
[Total Anthrop.Emis.:8.4+1.5 = 9.9 Pg]
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1990 - 1999: 1.3% y-
2000 - 2006: 3.3% !

Raupach et al. 2007, PNAS; Canadell et al 2007, PNAS



Trajectory of Global Fossil Fuel Emissions
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Actual emissions: CDIAC
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Factor (relative to 1990)

Anthropogenic C Emissions:
Carbon Intensity of GDP
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Anthropogenic C Emissions: Land Use
Change

Tropical deforestation
13 Million hectares each year

2000-2005
Tropical Americas 0.6 Pg C y”

Tropical Asia 0.6 PgCy’

Tropical Africa  0.3PgCy
1.5Pg Cy!

FAO-Global Resources Assessment 2005; Canadell et al. 2007, PNAS



Anthropogenic C Emissions: Land Use Change

Carbon Emissions from Tropical Deforestation
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The Airborne Fraction (2000-2006)

45% of all CO, emissions accumulated in the atmosphere

The Airborne Fraction

The fraction of the annual
- | anthropogenic emissions that
| remains in the atmosphere

53% were removed by natural sinks
Ocean removes _ 24% Land removes _ 30%

Canadell et al. 2007, PNAS



Time Dynamics of the Airborne Fraction,
Land and Ocean Fractions
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Causes of the Declined in the Efficiency of the Ocean Sink

T * Part of the decline is attributed to up
- to 30% decrease in the efficiency of
w0 T e the Southern Ocean sink over the

e 0 last 20 years.
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& o |+ Thissink removes annually 0.3+0.2
— Pg of anthropogenic carbon.

« The decline is attributed to the
strengthening of the winds around
Antarctica which enhances
ventilation of natural carbon-rich
deep waters.

* The strengthening of the winds is
attributed to global warming and the
ozone hole

Le Quéré et al. 2007, Science



Drought Effects on the Mid-Latitude Carbon Sink

A number of major droughts in mid-latitudes have contributed to the

weakening of the growth rate of terrestrial carbon sinks in these regions.
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FluX (PgClyr)

A northern Terrestrial sink decrease ?

13C latitudinal gradients
inverted in double deconvolution
(Miller et al. pers. com.)
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year .

Anomalies for the period June
1998 to May 2002 relative to
climatology (Zheng et al. 2004)

The constant global Land-absorbed fraction suggests ....
.. An increasing tropical land sink ?



Back to the future
The IPCC approach :
Scenarized emission scenarios based on
economic development pathways

SRES Scenarios
Are the emissions poised

to increase ?

Economic

Is there enough fossil
Carbon ?

How will the land and
ocean sink change ?
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Back to the future :

Anthropogenic C Emissions trends
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Per capita emissions, still a large potential to increase
In the future, with increasing wealth

United States —
Canada

Russian Federation ?
Germany
United Kingdom
Japan

Poland, Rep ?
Ukraine
Korea, Rep

South Africa )
Italy
France

Mexico 2 )
China S > °

India

Developed Countries

ton of CO,

Per year per capita



Slow changes in energy production technologies
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Unlike fast technological innovation in other sectors
(here example of electronic industry)
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Still huge amounts of fossil C available as energy sources
The adition of fossil C in the cycle is not reversible within 10° years

Atmosphere 800 PgC (2004

soils
~1,500 PgC

Coal
5,000 to 8,000 PgC

Carbon pools

Unconventional Fossil Fuels
15,000 to 40,000 PgC




Predicting the future :
the coupled carbon - climate system

C4MIP Protocol
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Predicting the future :
uncoupled sensitivity simulation

C4MIP Protocol
Uncoupled simulation

Climate variability effects
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Vertical Mixing
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Carbon Cycle feedbacks -

> biogeochemical
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All models indicate positive terrestrial carbon -cycle

The Carbon cycle
gives a positive
feedback to
climate change

Carbon cycle
feedbacks increase
the risks of
meeting tipping
points of the
climate system

feedbacks models
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Coupling carbon cycle with climate increases
the projected warming and its uncertainty

There is a large
'biogeochemical’ uncertainty
on projected CO,

This uncertainty is
comparable to economic
scenario uncertainty

CO, coupled > CO, uncoupled

Are models
'‘bon gargons’
or 'Cassandra’ ?

Atrnaspheric CO2 (ppm)

Glebal Surface Warrming ("C)
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Is that all ?

No



The new frontier

carbon feedbacks caused by other radiative species
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Direct radiative forcing of aerosols (W.m-2)
Locally very high + high regional contrasts
S04 ~ POM




Adding other greenhouse gases and
sulfate aerosols

AER Coupled simulation
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A Surface Mean Temperature (2m) (*C)
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A Surface Mean Temperature (2m) (7C)

Role of sulfate aerosols
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Unexpectedly the inclusion of aerosols increase atmospheric CO, by
an additional 7 ppm by 2100

Including aerosols leads to a cooling of 0.91°C and causes an
additional atmospheric CO, increase that reduces the initial cooling

Due to a reduction of NPP in northern forests by SO4 cooling



Conclusions

Good news = Formidable resilience of carbon sinks to
increased emissions

Bad news = We begin to see a small weakening of the carbon
cycle efficiency to clean up emissions
- Northern terrestrial sink likely smaller

- Possible that the tropical sink is intensifying (or the
deforestation is deccelerating)

- We do not have the observations to verify this

It will take a major effort in the next century to reduce
fossil fuel emissions

Bad news = Natural carbon sinks are going to attenuate in
response to global warming and to aerosols effects

Regional trends in carbon sinks, through long data series of
different nature

Uncertainties are LARGE, we need new cohorts of carbon
cycle researchers - please HELP US to train them |



