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Issues

How are Earth-like planets built?

How did silicate and metal reservoirs form?

How did Earth acquire its volatile elements? 



Why isotope geochemistry ?







Three main kinds of information:

Rates and timing
Tracing 
Past and present conditions 

Why isotope geochemistry ?



R
ates and tim

ing 



Nuclide Half-life (Myrs) Daughter

41Ca 0.1 41K
26Al 0.73 26Mg
60Fe 1.5 60Ni
53Mn 3.7 53Cr
107Pd 6.5 107Ag
182Hf 8.9 182W

247Cm 12 235U
205Pb 15 205Tl

129I 16 129Xe
92Nb 36 92Zr
244Pu 80 136Xe
146Sm 103 142Nd

235U 704 207Pb
238U 4468 206Pb
87Rb 48800 87Sr

Some significant radio-nuclides
in the early solar system 



Tracing

(Hillson, 1986)
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Opens the periodic table for isotopic research 

Multiple collector inductively coupled
plasma source mass spectrometry

Multiple collector inductively coupled
plasma source mass spectrometry
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Physicists who can designPhysicists who can design
and build new kindsand build new kinds

of MCof MC--ICPMS instrumentsICPMS instruments

To take advantage of To take advantage of 
MCMC--ICPMS you needICPMS you need



Experts in laser technologyExperts in laser technology

To take advantage of To take advantage of 
MCMC--ICPMS you needICPMS you need



Issues

How are Earth-like planets built?

How did silicate and metal reservoirs form?

How did Earth acquire its volatile elements? 



Planet formation

Disk theory



Star formation

Astronomers can see stars 
like our Sun forming in the 
Orion Nebula 





Many of the new stars are
embedded in a disk of dust and gas



Dusty disks can also be detected 
around slightly older stars with 
interferometry.

HR4796A is ~ 8 million years old



Time-scales



About 100 times bigger than the Earth
Saturn

Must have formed fast to trap nebular gases



How did the Earth and Moon form?
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Models for accreting the Earth 

Solar mass nebula 
(Cameron 1978)

Minimum mass solar nebula
(e.g. Hayashi 1978)

Late stage collisions with no nebula
(e.g. Wetherill 1986)





The Moon probably 
formed from debris 
produced in a giant 
impact between the 

proto-Earth 
(~90% Earth mass)
and another planet 

called "Theia" 
(~10% Earth mass).





























dust and rock debris...



clumped together...



...and formed the Moon



Model Time-scales for Accreting 
the Earth (>95%)

Solar mass nebula 
< 106 yrs (Cameron 1978)

Minimum mass solar nebula
~ 5 ×106 yrs (e.g. Hayashi 1978)

Late stage collisions with no nebula
107 - 108 yrs (e.g. Wetherill 1986)



George Wetherill, 1986
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Nuclide Half-life (Myrs) Daughter
   

41Ca 0.1 41K 
26Al 0.73 26Mg 
60Fe 1.5 60Ni 
53Mn 3.7 53Cr 
107Pd 6.5 107Ag 
182Hf 8.9 182W 

247Cm 12 235U 
205Pb 15 205Tl 

129I 16 129Xe 
92Nb 36 92Zr 
244Pu 80 136Xe 
146Sm 103 142Nd 

235U 704 207Pb 
238U 4468 206Pb 
87Rb 48800 87Sr 

   

Some significant radio-nuclides
in the early solar system 



238U/204Pbsilicate earth ~ 8
238U/204Pbcore = 0

Silicate earthSilicate earth

core
Pb-rich
U-poor

core
Pb-rich
U-poor

U-rich, Pb-poorU-rich, Pb-poor

238U/204Pb in the earth238U/204Pb in the earth

238U/204Pbtotal earth = 5 × 238U/204Pbsolar system
238U/204Pbtotal earth = 0.7



Clair Patterson 1956



start of galaxy        → time           → present

100

0
0

nucleosynthesis in stars

collapse of solar nebula end of planetary growth

stable

long-lived

start of planetary growth

Isotopes and time-scales
%

 a
bu

nd
an

ce
 re

m
ai

ni
ng



start of galaxy        → time           → present

100

0
0

nucleosynthesis in stars

collapse of solar nebula end of planetary growth

stable

long-lived

short-lived (extinct)

start of planetary growth

Isotopes and time-scales
%

 a
bu

nd
an

ce
 re

m
ai

ni
ng



supernova
remnant

Cassiopeia A



real stardust



Nuclide Half-life (Myrs) Daughter
   

41Ca 0.1 41K 
26Al 0.73 26Mg 
60Fe 1.5 60Ni 
53Mn 3.7 53Cr 
107Pd 6.5 107Ag 
182Hf 8.9 182W 

247Cm 12 235U 
205Pb 15 205Tl 

129I 16 129Xe 
92Nb 36 92Zr 
244Pu 80 136Xe 
146Sm 103 142Nd 

235U 704 207Pb 
238U 4468 206Pb 
87Rb 48800 87Sr 

   

Some significant radio-nuclides
in the early solar system 
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Hf/Wtotal Earth = Hf/Wsolar system = 1

Hf/Wsilicate Earth = 15

Hf/Wcore = 0

Silicate EarthSilicate Earth

core
W-rich
Hf-poor

core
W-rich
Hf-poor

Hf-rich, W-poorHf-rich, W-poor

Hf/W in the Earth

NB Silicate Earth = Earth's Primitive MantleNB Silicate Earth = Earth's Primitive Mantle





Asteroid 4 Vesta -
the source of
eucrites?
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Carbonaceous chondrites...Carbonaceous chondrites...

...represent bulk solar system...represent bulk solar system
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Earliest formed objects -calcium aluminum refractory inclusions

Some eucrites thought to come from Asteroid 4 Vesta
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Time after start of solar system (millions of years)
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George Wetherill, 1986



Accretion of the Earth
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Continuous core formation

Gradual accretion, mixing, isotopic equilibration and metal segregation

The ~ 2 εW excess of the silicate Earth relative to average solar system 
is consistent with ~63% accretion in 11 Myrs



Earliest formed objects -calcium aluminum refractory inclusions

Some eucrites thought to come from Asteroid 4 Vesta
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Time after start of solar system (millions of years)



Model Time-scales for Accreting 
the Earth (>95%)

Solar mass nebula 
< 106 yrs (Cameron 1978)

Minimum mass solar nebula
~ 5 ×106 yrs (e.g. Hayashi 1978)

Late stage collisions with no nebula
107 - 108 yrs (e.g. Wetherill 1986)   
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Martian meteorites



Martian meteorites
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Martian
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Have high ε182W 
but low Hf/W in 
martian mantle

(Lee and Halliday 1997, 
Kleine et al. 2004)



Martian
meteorites

Martian
meteorites

Tungsten data 
calibrated with a 

model of 
exponential core 

formation

Some sources developed within about 1 million yearsSome sources developed within about 1 million years
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Earliest formed objects -calcium aluminum refractory inclusions

Some eucrites thought to come from Asteroid 4 Vesta
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Time after start of solar system (millions of years)



Earliest formed objects -calcium aluminum refractory inclusions

Early reservoirs on Mars

Some eucrites thought to come from Asteroid 4 Vesta

Latest core formation on Mars
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τ Earth

Time after start of solar system (millions of years)



Issues

How are Earth-like planets built?

How did silicate and metal reservoirs form?

How did Earth acquire its volatile elements?





Accretion would have left the Earth 
really HOT...

…with oceans of MOLTEN ROCK



Core
formation

Core
formation

The standard 
model

Dense metallic iron liquids descend through the silicate EarthDense metallic iron liquids descend through the silicate Earth



Continuous core formation

Gradual accretion, mixing, isotopic equilibration and metal segregation

The ~ 2 εW excess of the silicate Earth relative to average solar system 
is consistent with ~63% accretion in 11 Myrs







Earliest formed objects -calcium aluminum refractory inclusions

Early reservoirs on Mars

Some eucrites thought to come from Asteroid 4 Vesta

Latest core formation on Mars
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Earliest formed objects -calcium aluminum refractory inclusions

Early reservoirs on Mars

Some eucrites thought to come from Asteroid 4 Vesta

Latest core formation on Mars

Earth's Moon
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τ Earth
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Clair Patterson 1956

Bulk Silicate Earth
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Issues

How are Earth-like planets built?

How did silicate and metal reservoirs form?

How did Earth acquire its volatile elements?



-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

124 126 128 129 130 131 132 134 136

δ MXe (‰)

Mass M (amu)

Earth Atmospheric Xe

Solar Wind Xe

U-Xe

The Earth’s
atmosphere

is fractionated
relative to the

solar wind
or U-Xe



The Earth and Moon are very different today, 
but isotopes show they formed from the same "stuff "...

Isotopes provide clues about the origin of planet Theia



Oxygen isotope tests
of provenance



from Wetherill (1994)
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Origin of Earth’s water ?Origin of EarthOrigin of Earth’’s water ?s water ?



U-Pb

oxygen
U-Pb + trace elements

Isotopic analysis of oxygen in zircons with an 
ion probe provides evidence of the existence

of low temperature water since 4.3 billion years ago



The major portion of 
Earth’s water may come from

water-rich planetesimals

Comets have a 
different D/H



Lunar highlands samples

BSSI

APB

CEPB

Moon

0.6992

0.6990

0.6988

The Sr isotopic composition of the Moon 
provides time-integrated Rb/Sr for Theia

87
S

r/86
S

r

Time-integrated Rb/Sr THEIA = 0.07±0.02

Rb/Sr MOON = 0.006 Rb/Sr MARS = 0.07



Lark and deGoursac [2001]

The inner solar system may have 
been dominated by volatile-rich 
Mars-like proto-planets



The Earth accreted with a mean life of >15 Myrs and 
over time-scales of 107 to 108 yr

This is consistent with accretion with little nebular gas 

The Moon-forming Giant Impact occurred at ~ 45 Myrs

Discrepant time-scales are consistent with incomplete 
mixing of metal and silicate during accretion

There was also late of loss of volatiles from the Earth

Theia had a chemistry similar to that of Mars but 
formed at a heliocentric distance similar to Earth

The inner solar system may have been dominated by 
Mars-like objects 

Water was added by 4.3 Ga
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