Ocean Acidification: The Other Half of the CO_2 problem: Getting the Message across to Policy Makers

Carol Turley Plymouth Marine Laboratory ct@pml.ac.uk

With thanks to the many scientists who have contributed to the contents of this presentation

Geoscience information for Teachers (GIFT) Workshop, Austria Centre Vienna, 15 April 2008

Oceanic Acidification

The Oceans are becoming more acid as they take up more CO₂

Modified from Wolf-Gladrow, Riebesell, Burkhardt, Bijma (1999) Tellus 51B, 461

The Ocean Acidification Timeline

While climate change has uncertainty, these geochemical changes are highly predictable.

assuming continued usage of known fossil fuel reserves

.....the Oceans are Acidifying Fast

It is happening now, at a rate and to a level not experienced by marine organisms for ~ 20MY

Turley et al. 2006; Blackford & Gilbert 2007

Present and Future Aragonite Saturation States

Polar and Subpolar waters

>Pteropod population density high in polar and subpolar waters (100s-1000's per m³)

>Integral part of the food webs

>Can dominate the flux of carbonate and organic carbon

>Shells of live pteropods dissolve rapidly once surface waters become undersatuated with aragonite

>Not expected to survive in waters undersaturated with aragonite

Shell dissolution in the live pteropod Clio pyramidata

Orr et al. 2005, Nature

Concern for Calcareous Organisms – Warm Water Coral Reefs

~285,000 square kilometres (less than 0.2% of the ocean)

State of the local division of the local div

BUT

- 100,000 species (possibly 1 9 million)
- High productivity (Coral reefs produce 20-25% of the fish caught by developing nations)
- 100 million people directly dependant on healthy coral reefs

Projections of Aragonite Saturation Levels With Time

Corals like warm, sunlit waters saturated in aragonite

Aragonite Saturation from Orr et al 2005

After Feely et al (in press) with Modeled Saturation Levels from Orr et al (2005)

Coral Calcification in a High CO₂ World

Langdon & Atkinson, (2005)

Threats to Coral Reefs

Sea surface warming and bleaching:

- ~1°C (SST): increasing loss of warm-water coral reefs due to bleaching
- ~2°C (SST): loss of warm-water corals globally –adaptive symbionts unlikely to function

Two-thirds of coral reef nations are developing countries (UNDP, 2002)

(modified from Kleypas and Langdon, 2002)

Vulnerability of Cold Water Corals

Projected Aragonite Saturation Horizon Depth for Year 1765, pCO2=278 ppmv

From Guinotte et al. Front. Ecol. Environ. 2006

Vulnerability of Cold Water Corals

Projected Aragonite Saturation Horizon Depth for year 2099 pCO2=788 ppmv

From Guinotte et al. Front. Ecol. Environ. 2006

Cold Water Corals Such as Lophelia pertusa

Colonies of *Lophelia* grow to form large structures more than 20 m in height and 100 m in width

Grow at depths of 50->1000m depth

Fish use the coral thickets as a feeding ground and for shelter

Reefs up to 8000 yrs old

The majority (70%) of deep-sea corals will be in undersaturated waters by 2100

Guinotte et al. Front. Ecol. Environ 2006; Turley, Roberts and Guinotte, Coral Reefs 2007

Effects on Calcareous Benthic Invertebrates

Harris et al. 1999; Bamber 1990; Smith 1979; Yuan et al. 2000; Knutzen 1981; Morris et al. 1989; Lorentz & Taylor 1992; Dwyer & Burnett 1996; Burnett et al. 1997; Tamburri et al. 2000; Shiramura 2002; Michaelidis et al., 2005;

Common Brittlestar Ophiothrix fragilis

Fish nibble the calcareous arms which are regenerated

>80% flatfish gut content are arms – important food source for fish

Regeneration of arms may be impacted by OA – research in Plymouth and Kristineberg Marine Laboratories underway

Heart Urchin Digestive Tract Disruption

Echinocardium cordatum intestine

pH 8

pH 7.2

Extensive mortalities at pH 6.8 in *Echinocardium cordatum* and thickening of the epithelial surface and slight disruption of the basement membrane of digestive tract at pH 7.2

Digestive tract changes will effect nutrient uptake, growth and reproductive potential From David Lowe et al. PML " A PROJECT TO ASSIST MOTHER NATURE TO RESPOND TO MODERN PRESSURES"

OCEAN ACIDIFICATION RESEARCH AT THE NATIONAL LOBSTER HATCHERY, PADSTOW, UK Larval stages

Egg Development

IV

Post larvae

Experiments growing larval lobsters at future CO_2 levels show that their ability to calcify their shells is reduced by larval stage IV

These experiments indicate that by the year 2100, the predicted increase in CO_2 levels in surface waters are expected to cause reduced weight and calcification rates in larval lobsters unless we significant and urgently reduce our CO_2 emissions

www.nationallobsterhatchery.co.uk

Experiments on Major Planktonic Calcifiers

V. Fabry

H. Spero

•CO₂ sensitivity experiments limited to 6 species
•5 out of 7 species showed 6-60% decrease in calcification
•<2% of major calcifying groups studied

V. Fabry

	# Extant species	Mineral form	Generation time
Coccolithophores (autotrophs)	~ 250	calcite	days
Foraminifera (heterotrophs)	~ 50	calcite	weeks
Euthecosomatous Pteropods (heterotrophs)	~ 32	aragonite	months to year?

From Vicki Fabry CSUSM

Concern for Many Marine Organisms and Ecosystems

- Reduced calcification rates
- Significant shift in key nutrients
- Shift in phytoplankton diversity
 - Reduced growth, production and life span of adults, juveniles & larvae
 - Reduced tolerance to other environmental fluctuations
- Changes to species biogeography
- Changes to biodiversity
- Changes to key biogeochemical cycles
- Changes to food webs
- Changes to ecosystem & their services
- Uncertainities great research required

Multiple Impacts of Climate Change and Ocean Acidification on Arctic Waters

2040 = Aragonite undersaturation 2070 = Calcite undersaturation

Projected Arctic Ice Melt due to Warming

+ Ocean warming

- Same time, same place
- Does this mean multiple impacts for the Arctic Ecosystem?

Ecosystem Impacts: from lab studies to ecosystems, where many <u>different</u> organisms interact, can we predict?

The Science and Policy Link

Taking the Science to Stakeholders: Getting the Language Right

Turley 1999

Turley 1999

Linking to IPCC Climate Change Scenarios:

Turley 2006

Drivers for a change in energy policy

The Power of Reports: The Royal Society Working Group Report on Ocean Acidification - 2005

- Ocean acidification is potentially as serious for marine ecosystems as climate change
- Research is in its infancy
- Global research effort urgently needed
- In the future we must investigate the combined impacts of Climate Change and Ocean Acidification

http://www.royalsoc.ac.uk/document.asp?id=3249

Scientists Getting the Message to Stakeholders – a concerted international effort

IGBP-SCOR Fast Track Initiative "Ocean Acidification"

The Power of Reports!

Interest and uptake by:

•National and International Research Funders

- International Agencies (IWC, WWF, EEA)
- National Governments

•United Nations Framework on Climate Change

•Intergovernmental Organisations (IGBP, SCOR, IOC, G8, Montreal Protocol, OSPAR & London Conventions)

•Intergovernmental Panel on Climate Change FAR

- Non-governmental organisations
- EU-FP7

Government policy makers and funders listening and investing

Engaging the Climate Change Policy Community

AVOIDING DANGEROUS CLIMATE CHANGE

Avoiding Dangerous Climate Change

Presentation at the ADCC Symposium at the Met Office, Exeter 1-2 February 2005 + Publication

Presentation at UNFCCC Twenty-Second Sessions of the Subsidiary Bodies and seminar of governmental experts, Bonn May 2005

United Nations Framework Convention on Climate Change

INTERGOMERNMENTAL PANEL

New IPCC report in 2007 – will help drive new framework on climate change i.e. post Kyoto. Ocean acidification included for the first time and made it through to the IPCC Synthesis Report

The IPCC Process: Established WMO & UNEP

Policymakers need an objective source of information about the causes of climate change, its potential environmental and socio-economic consequences and the adaptation and mitigation options to respond to it.

IPCC 1st Assessment Report (1990) - Rio de Janeiro Summit in 1992 IPCC 2nd Assessment Report (1995) - Kyoto Protocol in 1997 IPCC 3rd Assessment Report (2001) - development of the UNFCCC & Kyoto Protocol IPCC 4th Assessment Report (2007) - Bali roadmap, post 2012 deal on climate change

Ocean Acidification Recognised by IPCC in 2007 for the First Time:

"The uptake of anthropogenic carbon since 1750 has led to the ocean becoming more acidic with an average decrease in pH of 0.1 units."

"Increasing atmospheric CO_2 concentrations lead to further acidification."

"Projections based on SRES scenarios give a reduction in average global surface ocean pH of between 0.14 and 0.35 units over the 21st century."

"While the effects of observed ocean acidification on the marine biosphere are as yet undocumented, the progressive acidification of oceans is expected to have negative impacts on marine shell-forming organisms (e.g. corals) and their dependent

Ocean acidification needs to be remain part of the climate mitigation and adaptation process – post 2012

Public Understanding – Media, Articles & Art

- Summer 2004: Press Releases from IGBP, NOAA, PML and The Royal Society - Some take up by Radio and Broadsheets
- **Reports** in 2005/6 stimulated large media uptake
- BBC1 Climate Chaos Series "Are We Changing Our Planet" staring David Attenborough 2006
- Major articles in New Scientist, New Yorker, New Statesman, The Marine Scientist in 2005/6
- Numerous articles in the broadsheets and TV, radio, newspaper interviews UK and internationally
- 34 Google News hits between 27 Dec 2007 and 23 Jan 2008
- Children's and university books on climate change
- Take up by Artists

Crystallized whale skeleton: Cape Farewell Project

Search hits on "ocean acidification": October 2003 = 17 June 2006 = 267,000 February 2007 = 326,000 August 2007 = 356,000 April 2008 = 94,800

Search hits on "ocean acidification": April 2008 = 941,000

Key Policy Questions for the Future:

Are there detectable impacts already?

Can organisms/ecosystems adapt or acclimatise to such rapid future changes?

What are the feedbacks to Planet Earth?

What will ocean ecosystems look like in the future?

How is this going to affect humans?

What can be done about it?

What are the certainties and uncertainties?

What level of pH change is dangerous?

Are there important "tipping points" in ocean acidification that could be important in the CO₂ emission mitigation discussions?

What level of emissions mitigation have acceptable impacts?

Sunset Over an Ocean with Man's Footprint Now Detectable – Warmer, More Acidic, Less Diverse and Over Exploited

Oceans will become more acidic - high certainty.

The only way of reducing the impact of ocean acidification is a substantial and urgent reduction in CO_2 emissions – high certainty.

It is a key driver for a change in energy policy.

We need to ensure that these messages get delivered to the right people & organisations at the right time.

The level of certainty and potential impacts should be a strong driver in climate change mitigation policy negotiations.