

European Geosciences Union General Assembly 2013

Vienna | Austria | 07 – 12 April 2013

EGU.eu 🕴

Tsunami hazard assessment what did we learn since 2004 and 2011?

Hélène Hébert CEA DAM DIF/DASE/LDG Bruyères le Châtel <u>helene.hebert@cea.fr</u> with contributions by François Schindelé, Anthony Sladen, Jean Roger,

de la recherche à l'industrie

GIFT Workshop – 8 April 2013 EGU Vienna

Sébastien Allgeyer, Audrey Gailler

General

Tsunami hazard is more and more studied

- since the 1940-1960's in the Pacific Ocean, when and where the most damaging tsunamis of the 20th century occurred
- since 2005, in any oceanic basin exposed

Very few extreme tsunamis during about 40 years (1964-2004)

- but frequent important tsunamis in the Pacific
- several unexpected tsunamis since 2004
- building up warning systems (IOC Unesco)

The risk society...

in a growing coastal vulnerability

Outline

Some generalities

- About tsunamis
- How do we assess hazard: data and numerical methods

Examples of tsunami studies

- What we did know before 2004: lessons from French Polynesia
- 2004: from Sumatra to the Indian Ocean
- Back to the Euromediterranean area
 - historical cases and probable scenarios

Tsunami warning

• Example of the French tsunami warning center

What is a tsunami?

Initial deformation of the sea surface

In any tsunami initiation

 the sea surface is vertically deformed, causing a perturbation of the gravity potential energy

Back to equilibrium: restoring gravity forces

- uplifts tend to go down
- depressions are filled
 - propagation of gravity waves, producing the tsunami

A tsunami is triggered by any "geologic" or "geophysical" cause that initially disturbs the sea surface equilibrium

Different kinds of tsunamis

Earthquake magnitude > 7 to 7.5

Source dimension ~ 100-800 km

Periods 15 to 40 minutes

The long wave energy is well propagated far away from the source

- <u>considerable damage possible in far</u> <u>field</u>

Landslide source Source dimension ~ 5-30 km Periods 5 to 20 minutes The tsunami energy is more attenuated

huge damage but more locally

Manzanillo (Mexico) 1995

Magnitude Mw 8.0

Source dimension ~ 200 km

Wave heights

- 10 m (Mexico)
- 1 m (Marquesas, French Polynesia)
- 4 cm (Australia)

The tsunami phenomenon

A tsunami is an <u>amplification</u>, at the <u>shore</u>, of a <u>gravity wave</u> that has propagated across the ocean

- small offshore amplitude (1-100 cm)
- large wavelength (10-500 km)
- large offshore celerity, $c = \sqrt{gh}$
- periods 5 30 min

The cause is geophysical (submarine earthquake, landslide) 10.6 km

March 2011, Miyako

Why were the protection walls to low ?

- hazard assessment
- How efficient was the warning?
 - sensor networks and message issuing
- How ready were the populations?
 - education, outreach, exercises 📜

Assessment and prevention Seismological knowledge

Characterizing an ongoing tsunami

Outreach, education

How can we assess tsunami hazard after 2004 and 2011?

How can we observe tsunamis?

Field data indicating the integrated maximum effect

- run-up, horizontal distance, coastal tsunami height
- few temporal indication
- but proxy for the source extension
 - the max run-up region $\leftarrow \rightarrow$ extension of the rupture length

Sea level variations

Temporal data : tide gauges

- deployed in harbours
- devoted to the study of astronomical tides

Example of a tide gauge recording a tsunami

Which kind of tide gauge data?

Tide gauge sensors were usually designed to measure oceanic tides

- great improvement since 2005 in the sampling rate
- completing the operational networks

Examples in March 2011

EPOS-IV [echoe4tk02]19-Mar-11 16:57

Sea level variations

Japanese technology

• GPS buoys and tide gauges

GPS

0.5m

21

• pressure sensors

а

0.5m

21

GPS波浪計

合産波浪!

潮位計

15

18

2/20

0 12

2010

et al

Kawai

GPS波浪計

沿岸波浪計

潮位計

12

潮位業

10(km)

15

18

2/28

Why modeling tsunamis?

Historical catalogues are not complete

- rather complete in the Pacific (Japan, Peru..)
- partially in the Mediterranean
- heterogeneity in time

Modeling allows

- assessing probable or poorly characterized scenarios
- defining impacts expected onshore
 - hazard mapping
 - evcuation design
- following an ongoing tsunami

Tsunami modeling

Earthquake : elastic dislocation

 deformation *fully* and *instantaneously* transmitted to the sea surface

Navier Stokes equations

long wave, shallow water approximation

$$\omega^2 = gk \tanh(kh) \implies c = \omega/k \sim \sqrt{gh}$$

 $\lambda >> h$

 $M_0 = \mu ULW$ $M_w = 2/3 \log (M_0) - 10.73$ $M_0 \text{ moment sismique}$ U déplacement $\mu \text{ rigidité}$ L (W) longueur (largeur) de la faille

$$\frac{\partial(\eta+h)}{\partial t} + \nabla \cdot [\mathbf{v}(\eta+h)] = 0$$
$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\mathbf{g} \cdot \nabla \eta + \Sigma \mathbf{f}$$

g gravity **v** horizontal speed
η sea elevation

Solving the equations

A finite difference scheme

- adapted from Mader (1988 : explicit, monogrid) (Heinrich et al., 1996)
- with an iterative Crank Nicolson scheme
- multigrid : coupling of bathymetric grids with an increasing resolution
 - down to cell sizes of a few meters
- since 2010 : parallel computing allowing High Performance Computing

Bathymetric / topographic model

In order to compute run-up heights

- requires to merge bathymetric and topographic data at a fine scale
- nowadays high resolution data are available (lidar data)

Tsunamis in French Polynesia, 1994-1996

Between 1994 and 1996, 4 tsunamis reached the Marquesas IsaInds, impacting with 2-3 m tsunami height (Chile, M_w = 8.1, 1995)

Observations

- run-up 2 to 3 m for tsunamis from **Chile** (1995, $M_w = 8.1$) and **Peru** (1996, $M_w = 7.5$)
- almost no amplification for tsunamis from Kurile (1994, M_w = 8.3) and Mexico (1995, M_w = 8.0)

Résultats des modèles

- Maximum water heights in Tahauku Bay (Hiva Oa)
 - in agreement with observations

First order influence of

 submarine bathymetric features (fracture zones, volcanic ridges..)

Green's law H^{1/4}

240

280

200

240

280

[•] fault azimuth

Example of a hazard study

For a Risk Prevention Plan

- project ARAI : Aléas et Risques naturels, Aménagement et Information ("protect" in Polynesian) (coord. BRGM 2005-06)
- historical data
- seismotectonic zoning
- definition of threatening sources
 - deterministic methodology

Numerical modeling

- high resolution data
- 6 coastal sites
- 5 sources

Seismic gap in North Chile

Integrated results for coastal sites

212°17' 212°18' For various places and selected sources 150°W 140°W Rangiroa (Avatoru) lles Marquises 25 ans possible max S Chile 10°5 no inundation 10°S Hiva Oa (Tahauku and Ba 2007 Atuona) 2007 al., max 1946 Archipel des Tuamotu 9°48'S al. Schindelé et run-up ~ 10 m lles de la Sladen et Société Synthesis 20°S 20 8 models historical data Rimatara 9°48'30"S lles Australes Tubuai lles Gambier Raivava Estimation des run-up pouvant être atteints le long Rapa des côtes étudiées iles Marc State of the art in the 9°49's 2 fois par siècle au moins >= 0.5 m et < 1 m beginning of the 2000's 30°S 30°S >= 1 m et < 3 m >= 3 m 0.0 140°W 150°W

Sumatra, 26 December 2004

Major thrust earthquake (Mw ~ 9.2) > major tsunami

quite unexpected in the Indian Ocean

- high touristic vulnerability
- many pictures, videos..

An outstanding offshore record

- Observation within a few hours by several altimetric satellites (Jason, Topex-Poseidon, Envisat, GFO)
- Inverting such data provides a picture of the seismic source of the earthquake

This kind of record was quite unique [®]N

CLS

Observations in north Sumatra

Measured tsunami height(m)

Tsunami data

Banda Aceh / Lhok Nga

Flow velocities from videos

Banda Aceh / Lhok Nga

La Réunion, 2004

80°

40°

20°

0°

-20°

-40°

100°

Coastal impacts in La Réunion

- Several very local inundations, especially in the west of the island
- Influence of the slip heterogeneities

La Réunion

Late tsunami arrivals

- moorings were broken for the Uruguay, twice during several hours
- more than 4 hours after the first arrivals
- material damage only

Propagation history

Multiple reflections?

- indicated by modelings mostly
- less obvious in tide gauges

Another example of reflection in March 2011

Focusing by bathymetric features

Tsunamis in the Mediterranean

The Mediterranean is characterized by a complex tectonic context of convergence

- Aegean subduction (Crete, Greece)
- major tsunamis already occurred in the past, but are rare
- magnitudes above 7 and 8 possible
- 365, Crete

Example of a scenario in eastern Mediterranean

- The effects are restricted to the East
- **Example of a scenario M**_w 8.0
 - maximum impact : Greece, Lybia, Tunisia, Egypt, Turkey, Lebanon

Convergence Europa-Africa

Seismic activity

- sometimes submarine epicenters
- historical tsunamis: 1755, 1365, 1856

Earthquakes in Boumerdès, May 2003 (M_w = 6.9)

tsunami well observed in the Balearic

El Asnam, 1980

36°

Modeling of tide gauges in Spain

- periods 15-20 min
- results consistent with a coseismic triggering (and not turbidity flows)

Iorocco

Modeling towards the Balearic

Main axis

• trapping around islands

Discussion on models

 may require a stronger source or located more offshore

The Balearic

- In the frame of the EC FP6 TRANSFER project, a hazard assessment was carried out for Palma (Majorca)
- 24 earthquake scenarios along the Norh Africa margin

Hazard assessment in the Balearic

Palma is moderately exposed to this kind of sources

local inundations possible

Rather more protected than the SE coastline of Majorca

Scenarios in the Atlantic

1755 : a transoceanic tsunami

- observed in the Lesser Antilles
- In Europe
 - Portugal, Spain, Morocco
 - Irland, Great Britain
 - France ?

Needs for

- deposits
- complementary to fine models

Question

 How to account for a Mw 8.5 earthquak with such a small fault?

1755: impact in France

A key tsunamigenic area in NE Atlantic

Not documented for French coastlines

- observations in Lesser Antilles (run-up 1 to 5 m)
- a comprehensive historical study is necessary, with *in situ* investigations

Towards France

Example with source parameters from Baptista (2003)

- focusing towards Ireland and GB
- to a less extent towards French Brittany

Models towards La Rochelle

- protected harbour, but larger amplitudes explained to the west of the islands
 - no major flooding
 - difficult to distinguish from storm deposits

Allgeyer et al., 2012

The CENALT – CENtre d'ALerte aux Tsunamis

Tsunami Warning Systems

National context

- national funding
- national consortium with relevant actors in seismology, ea level monitoring, operational infrastructure

Within an international frame

- working groups and coordination with Intergovernmental Coordination Groups set up by IOC
- between warning centers

Tsunami Alert System – Operational Part

Level of warning	INTERNATIONAL	FRANCE
5,5 < <u>Mw</u> < 6,0	Information Bulletin 400 km	YELLOW
6,0 ≤ <u>Mw</u> < 6,5	Information Bulletin Regional Tsunami Advisory 400 km	YELLOW
6,5 ≤ Mw < 7,0	Regional Tsunami Watch 400 km	ORANGE
<u>M</u> w ≥ 7,0	Basin-wide Tsunami Watch	RED

Secured operational network

Optimal cooperation between seismic station network operators Cooperation in progress for tide gauge network operators

Upgrade of tide gauges (SHOM)

- Upgrade of 34 stations equipped with high sampling rate and realtime transmission
- Direct connection to the CENALT through VPN

The CENALT, automatic detection and interactive processing

Earthquake detection in real time: time origin, association, automatic location, magnitude calculation

- Data and communications flow
- Archiving of raw data
- Data format conversion

Continuous sea-level data reception Historical events database

Continuous sea-level signal reception (Atlantic ocean, Channel, Mediterranean sea)

The CENALT, real time hazard assessment and scenario database

The CENALT : a unique training exercise

□ Need to hire a team of 7 analysts for the shifts

 $\hfill\square$ Need to train them intensively over a 6-month period in :

- Seismology, tectonics
- Signal processing
- Earthquake and tsunami hazard
- Sea-level measurement
- Use of CENALT software

□ Need to evaluate the training :

- Heavy load of hands-on exercises
- Tests based on real events

□ Three months of complete testing (April – June 2012)

□ In the future, ensure continuous training although the team is taking shifts

2. Tsunami Detection

- 3. Data analysis, threat evaluation 151 events* in the NEAM region 1147 events* at a global scale
- 4. Monitoring of the whole system capability

CENALT is fully operating since July 2012 as National tsunami warning center (NTWC) and Candidate tsunami watch provider (CTWP).

Conclusions

Major tsunamis can occur in places where the hazard was underestimated

 but seismological and seismotectonic analyses help to define tsunami-prone areas (e.g. there is no subduction zone near France....)

Numerical modeling greatly helps to refine hazard assessment

- provided uncertainties are controlled
- with accurate data at the shore

First order influence

- magnitude, mechanism, fault azimuth
- slip heterogeneities
- bathymetric features

We need

- more historical data for areas weakly exposed
- improvement of high performance computing for warning
- multidisciplinary approaches
- more outreach and preparedness

Thank you

