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Projections of Future Changes in Climate
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Projections of Future Changes in Climate

Projected warming
In 21st century
expected to be
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Projections of Future Changes in Climate

IPCC 4AR: Precipitation Projections
2080-2099
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Wheat yields with increasing CO,
concentration
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problem of mild winters (dormancy break),
advance in phenology (flowering - frost risk/bad fruit setting)
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An advance of ripening period towards the summer hottest period
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e Integration of knowledge
Light microclimate, water budget, energy balance

« Taking account of interactions |
« climate x soil x cultural practices »
* Integration of quality criteria (sugar, acidity,
biochemical components)
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Projections of Future Changes in Climate

Because climate-change simulations are inherendy
uncergin, two climate models have been used 1o
simulate fuure climate, using the A2 scerario of
the IPCC's Fourth Assessment Report: the National
Canter for Atmaspheric Research, US (NCAR) model
and the Commeonwealth Scientific and Induserial
Research Organization, Australia (CSIRO) medel. We
refer to the combination of model runs with A2 inputs
as the MNCAR and CSIRO scenarios. Both scenarios
project higher temperatures in 2050, resulting in higher
‘evaporation and increased precipitation as this water

wapor returns to earth. The “wetter” NCAR scenario
estimates average increases on land of
about 10 percent, whereas the “drier” CSIRO scenario
estimates increases of about 2 percent. Figure | shows
the change in average maximum temperature batween
‘2000 and 2050 for the CSIRO and NCAR scerarios.
Figure 2 shows changes in average precipitation. In each
set of figures, the legend colors are identical a specific
color represents the same change in temperature or
|precipitation across the wo scenarios.

5 CLIMANE CHANGE

W CLIMATEC HANGE

A quick glance at these figures shows that substantial
differences exist across the two scenarios. For
example, the NCAR scenario has subszntially higher
average maximum temperatures than does CSIRO.
The CSIRO scenario has substantial precipitation
dedlines in the western Amazon while NCAR shows
declines in the eastern Amazon. The NCAR scenario

has higher precipication in Sub-Saharan Africa than does
CSIRG. Northern China has both higher emparanre
and more precipitation under MCAR than under
CSIRO. These figures qualitatively illustrate the range
of potential climate outcomes using current modeling
capabilities and provide an indication of the uncertainty
in climatechange impacts.
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Figure 5.1. (a) Current suitability for rain-fed crops (excluding forest
ecosystems) (after Fischer et al., 2002b). SI = suitability index;
(b)Ensemble mean percentage change of annual mean runoff between
present (1981 to 2000) and 2100 (Nohara et al., 2006). From IPCC AR4



Impact on Agricultural Productivity with Carbon
Fertilization (percent)
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Impact on Agricultural Productivity without
Carbon Fertilization (percent)
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Climate change will interact with non-climate drivers and stressors to
exacerbate vulnerability of agricultural systems, particularly in semi-arid
areas (high confidence). Increasing temperatures and changes in
precipitation are very likely to reduce cereal crop productivity. This will
have strong adverse effects on food security.

New evidence is also emerging that high-value perennial crops could
also be adversely affected by temperature rise (medium confidence).

Pest, weed and disease pressure on crops and livestock is expected to
increase as a result of climate change combined with other factors (low
confidence).

Moreover, new challenges to food security are emerging as a result of
strong urbanization trends on the continent and increasingly globalized
food chains, whichrequire better understanding of the multi-stressor
contfext of food and livelihood security in both urban and rural contexts
in Africa.



Climate change is very likely to have an overall negative effect on yields of
major cereal crops across Africa, with strong regional variability in the
degree of yield reduction (high confidence).

One exception is in eastern Africa (maize production above roughly 1,700 m in
elevation, although the majority occurs at lower elevations thereby implying a
potential change in the distribution of maize cropping. Maize-based systems,
particularly in southern Africa, are among the most vulnerable to climate
change:estimated yield losses at mid-century range from 18% for southern
Africa to 22% aggregated across SSA, with yield losses for South Africa and
Zimbabwe in excess of 30%.

Simulations that combine all regions south of the Sahara suggest
consistently negative effects of climate change on major cereal crops in
Africa, from 2% for sorghum to 35% for wheat by 2050 under an A2 scenario.
Studies in North Africa also indicate a high vulnerability of wheat production to
projected warming trends. In West Africa, temperature increases above 2° C are
estimated to counteract positive effects on millet and sorghum yields of
increased precipitation,with negative effects stronger in the savannah than in the
Sahel, and with modern cereal varieties compared with traditional ones



Several recent studies since the AR4 indicate that climate change will have
variable impacts on non-cereal crops, with both production losses and gains
possibe. Suitability for growing cassava is estimated to increase with the
greatest improvement in suitability in eastern and central Africa. Bean yields in
Eastern Africa are estimated to experience yield reduction. For peanuts, some
studies indicate a positive effect and others a negative one. Banana and
plantain production could decline in West Africa and lowland areas of East
Africa, whereas in highland areas of East Africa it could increase with
temperature rise.

Suitable agro-climatic zones for growing economically important perennial crops
are estimated to significantly diminish, largely due to the effects of rising
temperatures .Under an A2 scenario, by midcentury,suitable agro-climatic zones
that are currently classified as very good to good for perennial crops may
become more marginal, and what are currently marginally suitable zones may
become unsuitable; the constriction of rop suitability could be severe in some
cases (Table 22-4). Movement of perennial crops to higher altitudes would serve
to mitigate the loss of suitability at lower altitudes but this option is limited. Loss
of productivity of high-values such as tea, coffee and cocoa would have
detrimental impacts on export earnings.



Projections with crop
models (IPCC 2014)
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Figure 22-5: The effect of rainfall and temperature changes on mean crop yield. Mean crop yield change (%) relative
to the 1961-90 baseline for 7 temperatures (x-axis) and 5 rainfall (y-axis) scenarios. Results are shown as the
average over the 35 stations across West Africa and the 6 cultivars of sorghum and millet. White triangles and
circles are the projected anomalies computed by several CMIP3 GCMs and three IPCC emission scenarios (B1,
A1B, A2) for 2071-90 and 2031-50, respectively. Projections from CMIP5 GCMs and three RCPs (4.5, 6.0 and 8.5)
are represented by grey triangles and circles. Models and scenarios names are displayed in figure S2 (available at
stacks.iop.org/ERL/8/014040/mmedia). Past observed climate anomalies from CRU data are also projected by
computing 10-year averages (e.g. '1940' is for 1941-50). All mean yield changes are significant at a 5% level except
boxes with a diagonal line. Source: Sultan et al., 2013



Livestock systems in Africa face multiple stressors that can interact with climate
change and variability to amplify the vulnerability of livestock-keeping communities

Loss of livestock under prolonged drought conditions is a critical risk given the
extensive rangeland in Africa that is prone to drought. (particular concern for regions
that are projected to become drier with climate change, such as Northern and
Southern Africa)

Adequate provision of water for livestock production could become more difficult
(drinking water provision for livestock is critical)

Livestock production will be indirectly affected by water scarcity through its impact
?n grop production and subsequently the availability of crop residues for livestock
eeding

The extent to which increased heat stress associated with climate change will affect
livestock productivity has not been well established, particularly in the tropics and
sub-tropics.Higher temperatures in lowland areas of Africa could result in reduced
stocking of dairy cows in favor of cattle ,a shift from cattle to sheep and goats and
decreasing reliance on poultry.Livestock keeping in highland areas of East Africa,
which is currently cold-limited, would potentially benefit from increased temperatures



genetic material ( precocity, cycle
duration, thermal optimum, chilling
requirements, frost sensitivity ..)

adjustment of cultural practices : sowing
dates, fertilization/irrigation,...

coping with pests and diseases



=+ 1° ~ 200km towards north or 150m in altitude

= up to now, few evidences of recent evolution

= necessity to consider displacements in production
zones ( revision of potentialities , introduction of new
crops).. but what about the economical context

= and the * terroirs’ (they cannot be delocalized !!) ?



Coffee: increased suitability at high latitudes;
decreased suitability at low latitudes (Kenya)

Tea: decreased suitability for Uganda; increased
suitability at high latitudes and decreased suitability
at low latitudes for Kenya

Cocoa : constant or increased suitability at high
latitudes; decreased suitability at low latitudes for
Ghana, Cote d’lvoire

Cashew: increased suitability (Ghana, Cote d’lvoire)
Cotton: decreased suitability (Ghana, Cote d’lvoire)
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Suitability for grain maize, sunflower and soya, 2050s

red/brown/blue: suitability extension
green/ Ipurple: Baseline 1961-90

Parry 2005
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LIMITE SEPTENTRIONALE DE LA VIGNE EN EUROPE
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CLimate Change Adaptability of WINE
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Climate Change Impact Assessment for
Viticulture in Europe
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Effect of warming on potential yield_l
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Adaptability of Syrah (for phenology)

harvest
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I Current Suitability
[[] Suitability Retained > 50% GCMs
- Suitability Retained > 90% GCMs
[ Novel Suitability > 50% GCMs
I Novel Suitability > 90% GCMs




A possible range for adaptation

I
Grapevine Climate/Matu rjllty Groupings
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Socioeconomic and environmental tradeoffs of biofuel
production, especially the effect on land use change and food
and livelihood security; better agronomic characterization of
biofuel crops to avoid

maladaptive decisions with respect to biofuel production

vulnerability to and impacts of climate change on food systems
(production, transport, processing,storage, marketing and
consumption)

impacts of climate change on urban food security, and dynamic
of rural-urban linkages in vulnerability and adaptive capacity

Impacts of climate change on food safety and quality
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Observed change in precipitation over land
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Figure 7-2: Summary of estimates of the impact of recent climate trends on yields for four major
crops. Studies were taken from the peer-reviewed literature and used different methods (i.e.,
physiological process-based crop models or statistical models), spatial scales (stations, provinces,
countries, or global), and time periods (median length of 29 years). Some included effects of
positive CO2 trends (7.3.2.1.2) but most did not. (a) shows number of estimates with different
level of impact (% yield per decade), (b) shows boxplot of estimates separated by temperate
vs.tropical regions, modelling approach (process-based vs. statistical), whether CO2 effects were

included, and crop.
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Figure 7-3: Since the AR4 report, international food prices have reversed historical downward trend.
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Effects of 2003 summer heat wave on EU agriculture
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Evolution du TAVP au 25 Aot et 10 Sept (1987 — 2007)
Syrah — Chateauneuf du Pape
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Results: Other Studies
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Phenological Shifts vary by region
and variety:

Budburst
6-13 days earlier by 2050

Harvest
9-18 days earlier by 2050

Season Duration
15-31 days earlier by 2050

Winegrape Quality impacts also vary
by region and variety:

-12 to -57 percent by 2050
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Land precipitation is changing significantly over broad areas
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The extent of droughts
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