

ARAN94

Sea level changes recent past, present, future

Anny Cazenave LEGOS-CNES Toulouse, France

ur Changing Planet » GIFT workshop, EGU 2014

IPCC 5th Assessment Report (2013): main message

→ Global warming & dominant role of human activities confirmed

IPCC= Intergovernmental Panel on Climate Change AR5 = 5th Assessment Report (released in September 2013)

Earth's Energy Budget

Earth

Equilibrium state

Today →Energy imbalance

Ocean temperature measurements (XBT, Argo)

Since about 2003 \rightarrow 'Argo' profiling floats

The ocean heat content is increasing

Change in global average upper ocean heat content

IPCC AR5

IPCC AR5

Land ice is melting....

Rhone Glacier (Swiss Alps)

20th century sea level rise

IPCC AR5, 2013

Sea level change now routinely measured by altimeter satellites

Since 1993 → satellite altimetry

Sea surface height measurements with 1-2 cm accuracy

Global coverage of the oceans in ~10 days

Sea level rise : 20th century and past 2 decades

Questions

Is sea level rise accelerating? Yes!

Church et al. (2013) concludes that « the increased rate of sea level rise since 1990 is not part of a natural cycle but a direct response to increased radiative forcing on the climate system »

 Is the current rate of rise unusual? Yes and no!

Global mean sea level rise since the Last Glacial Maximum (- 20 000 years)

From Lambeck et al., 2002

Evolution of the mean sea level over the last 2000 years

Kemp et al. (2011) 18

-20 000 to -10 000 years

Question

Can we close the sea level budget?

Components of the global mean sea level rise

- Ocean warming (thermal expansion)
- Land ice melt
- Exchange of water with continental reservoirs

Causes of the global mean sea level rise (altimetry era: last 2 decades) Individual contributions (in % of the observed rate of rise)

The ocean is warming

Change in global average upper ocean heat content

IPCC AR5

Thermal expansion contribution to sea level rise

Retreat and thinning of mountain glaciers observed by satellite imagery

Columbia glacier (Alaska) 1980 and 2007

Berthier et al. 2010

Contribution of glaciers to sea level rise (1993-2010) → ~0.9 mm/yr (IPCC AR5)

IPCC AR5

Since the early 1990s, ice sheet mass changes measured from space

GRACE space gravimetry mission (launched in 2002) Measurement of temporal variations of the Earth's gravity field →mass redistribution at the surface of (and within) the Earth

0

- Temporal resolution : 1 month
- Spatial resolution : 300 km

GRACE

Gravity Recovery And Climate Experiment

Ice mass loss of the Greenland ice sheet (blue-violet-black) between 2003 and 2012 observed by GRACE

Courtesy: J. Wahr

Ice mass loss from Greenland and Antarctica measured by space techniques since 1990 (in Gt) → mass loss acceleration since 10-15 years

Shepherd et al., 2012 IPCC AR5

Ice sheet mass balance = surface mass balance (accumulation/ablation) + ice loss through calving of icebergs (dynamical change)

1.0 to 1.4 mm/yr for 1993-2009 and 1.2 to 2.2 mm/yr for 2005-2009.

Ice sheet contribution (1993-2010) : 0.6 +/- 0.2 mm/yr

IPCC AR5

Causes of the global mean sea level rise (altimetry era: last 2 decades) Individual contributions (in % of the observed rate of rise)

Land water storage change

2 components:
- Natural climate variability
- Anthropogenic changes
(dam building & groundwater extraction)

Land water storage change due to natural sources

1993-2012 → -0.3 mm/yr

Chao et al., 2008

Ground water depletion Sea level rise

Wada et al., 2012

Anthropogenic land water storage (1993-2012) Dam building : -0.3 +/- 0.03 mm/yr Ground waters : + 0.56 +/- 0.1 mm/yr Net effect : +0.26 +/- 0.11 mm/yr Natural land water storage : 0.08 +/- 0.02 mm/yr Total: 0.34 +/- 0.15 mm/yr

Y. Wada (Pers. Com.)

IPCC AR5 – anthropogenic only- (1993-2010) : 0.38 +/- 0.12 mm/yr

Observed sea level budget during the altimetry era (1993-2010) IPCC AR5

Regional variability

Sea level rise is not uniform!

Rates of sea level rise observed by satellite altimetry (1993-2013)

Regional variability in sea level change over 1993-2012 → Spatial trend patterns mainly caused by non uniform thermal expansion (& to a lesser extent to salinity variations)

Global mean trend removed

Source: LEGOS

Future sea level rise

4 scenarios for future greenhouse gas emissions considered by IPCC AR5 for the 21st century

<u>Radiative forcing</u>: an energy imbalance imposed on the climate system either externally or by human activities; ususally reported as a change in energy flux at the top of the atmosphere and expressed in units of watts per square meters (Wm⁻²)

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

WMO

Ensemble mean projections of regional sea level rise by the end of the 21st century (regional variability due to non uniform thermal expansion & salinity + solid Earth effects)

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Non-uniform thermal expansion is not the only cause of regional variability : Large-scale water mass redistributions due to past, present and future land ice melt deform the ocean basins (because the Earth's mantle is viscous and the crust is elastic) and change the mutual gravitational attraction of water & ice masses → regional changes in sea level

Effects on regional 'relative' sea level due to solid Earth's deformations in response to ongoing & future ice sheet melting (Greenland : 0.5 mm/yr; west Antarctica : 0.5 mm/yr)

Sea Level change (mm yr⁻¹)

Amplification of the rate of sea level rise in the tropics by 20%-30%

Regional variability by 2100 Percentage of deviation from the global mean rise (same values for all scenarios)

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Vertical crustal motions can amplify the climate-related sea level rise (if the ground is subsiding)

What counts is the TOTAL 'relative' sea level !!!

Long-term climate change Many aspects of climate change will persist for many centuries even if emissions of greenhouse gases are stopped!

- 20% of emitted CO₂ will remain in the atmosphere more than 1000 years
- Sea level will continue to rise for mainy centuries in response to deep ocean warming and associated thermal expansion
- Ice sheet mass loss may become irreversible (Greenland)
 → sustained warming above a certain threshold (1°C-4°C) may lead to near-complete loss of the Greenland ice sheet over a time scale of 1000 years (→ 7 m of sea level rise)

Conclusions

- Current global mean sea level rise is likely accelerating
- The sea level budget (altimetry era) almost closed
- Global mean sea level rise: very likely a consequence of anthropogenic global warming
- Regional variability (spatial trend patterns) : still dominated by natural (internal) modes of climate variability
- The global mean sea level will continue to rise during the 21st century in response to global warming (values by 2100 in the range 50 cm-1 m NOT unlikely)
 - The regional variability will amplify the global mean rise by 30%-40% in the tropics
- Even if GHG emissions stop tomorrow, sea level will continue to rise during several centuries

Thanks for your attention

Subsidence of coastal megacities during the past few decades

From Nicholls (2011)₅₅

Post Glacial Rebound

Observed sea level budget 1993-2010 (IPCC AR5) Individual contributions (mm/yr)

Sum of contributions : 2.8 +/- 0.5 mm/yr Observed rate of rise: 3.2 +/- 0.4 mm/yr

Greenhouse Gas Emissions

Le Quéré et al., 2012

EL Nino-Southern Oscillation (ENSO) → a major natural/internal perturbation of the climate system

Warm water and more rain over the central and eastern tropical Pacific

Cold phase of ENSO

Source: C. Cassou