The Great Oxidation Event

Ariel D. Anbar School of Earth and Space Exploration School of Molecular Sciences Arizona State University

Photo credit: Tanja Bosak

Earth's Atmosphere Composition

O₂ in Earth's Atmosphere through Time

Why do we care?

Astrobiology

Anthropocene

Exoplanets!

3711 confirmed4496 candidates927 terrestrialand counting!

https://exoplanets.nasa.gov/

Coming Soon: Spectroscopic search for biosignatures

MICHAEL GOODMAN

O₂ as a Biosignature

Source: R. Hanel, Goddard Space Flight Center

Welcome to the Anthropocene!

CLIMATE INTERVENTION

Marcia McNutt (*Chair*), Waleed Abdalati, Scott Doney, David Titley

BOARD ON ATMOSPHERIC SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

THE GREEN MARS

Terraforming of Mars

Elon Musk

"You need to live in a dome initially but over time you could terraform Mars to look like Earth and eventually walk around outside without anything on. ... So it's a fixer-upper of a planet."

What caused the **Great Oxidation Event?**

H Escape

02

Photosynthesis? $CO_2 + H_2O \rightarrow O_2 + CH_2O$

02

Photo credit: Tanja Bosak

đ

 \circ

ð

 \leq

ite

C

() vft.asu.edu/VFTDresser/panos/Dresser/Dresser.html 360 -8.2 Tilt 180 **Dresser Formation**

Media

Western Australia ~ 3.5 billion years old

Sulfide Minerals Major reservoir of Mo React with O₂

When O_2 is absent: Mo locked in sulfides • [Mo]_{ocean} low continental shelf 300 - 600 feet continental slope 12,000 feet

ocean floor

U.S.

Inferring Changes in Seawater Molybdenum vs. Time

Data from Scott et al., 2008

Molybdenum and Other Proxies Indicate a "Whiff" of O₂

Synthesis after Anbar et al., 2007; Kaufman et al., 2007; Duan et al., 2010; Kendall et al., 2013; Garvin et al., 2009; Reinhard et al., 2009

Before the Great Oxidation Event A Complex Picture

Ostrander et al., in review

O₂ in Earth's Atmosphere through Time

Summary So Far

- The Great Oxidation Event occurred around 2.3 billion years ago;
- Evidence of microbial mats ("stromatolites") that might have produced O₂ are found as far back as 3.5 billion years ago;
- Molybdenum and other elements in ancient ocean sediments suggest a slightly oxidizing surface environment – and hence O₂ production – at least by 2.5 billion years ago and maybe a billion years earlier;
- Photosynthesis was necessary for the Great Oxidation Event but it originated much earlier!

What caused the **Great Oxidation Event?**

What kept O₂ low before the Great Oxidation Event?

Carbon Isotope Record Suggests burial of C_{org} has changed but not enough

Krissansen-Totton et al., 2015

What About Geological Sinks?

Catling, 2014

Earth's Interior An effectively infinite O₂ sink

Earth's Interior Possible changes

- Change in mantle f₀₂
- Change in crustal composition
- Change in composition or flux of volcanic gases

There is some support for each of these ideas!

Two-step rise of atmospheric oxygen linked to the growth of continents

Cin-Ty A. Lee^{1*}, Laurence Y. Yeung¹, N. Ryan McKenzie^{2,3}, Yusuke Yokoyama⁴, Kazumi Ozaki⁴ and Adrian Lenardic¹

Lee R. Kump¹ & Mark E. Barley²

Vol 448|30 August 2007|doi:10.1038/ nature06058

HE GEOLOGICAL SOCIETY OF AMERICA

Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle

Sonja Aulbach1 and Vincenzo Stagno2 Institut für Geowissenschaften, Goethe-Universität, 60323 Frankfurt am Main, Germany ²Earth Sciences Department, Sapienza University of Rome, 00185 Rome, Italy

> nature geoscience

ARTICLES PUBLISHED ONLINE: 1 AUGUST 2016 | DOI: 10.1038/NGEO2772

Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen

Tingting Gu^{1*}, Mingming Li^{2†}, Catherine McCammon³ and Kanani K. M. Lee¹

Fabrice Gaillard¹, Bruno Scaillet¹ & Nicholas T. Arndt²

nature

Earth and Planetary Science Letters

Volume 460, 15 February 2017, Pages 68-75

Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir

Jon M. Husson 📥 💆 Shanan E. Peters

doi:10.1038/nature11024

Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago

C. Brenhin Keller¹ & Blair Schoene¹

nature geoscience

ARTICI FS PUBLISHED ONLINE: 18 SEPTEMBER 2017 | DOI: 10.1038/NGEO3030

Earth's early O₂ cycle suppressed by primitive continents

Matthijs A. Smit^{1*} and Klaus Mezger²

Consequences of Cooling A Geo-Gedanken Experiment

Hot Earth *Rapid surface-deep exchange O*₂ *can never rise*

Cold Earth

Slow surface-deep exchange O₂ rises easily

To understand the Great Oxidation Event we must develop a theory of Earth system evolution, integrating surface and deep Earth geoscience.