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Outlines

a geophysical introduction to deep Earth



old news from the core : Dante’s inferno (1315)
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first physical models
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> an old sun (Descartes, 1644)
> a fluid Earth

Woodward (1695)



Hopkins' hypotheses (XIXth century)

> melting temperature increases with pressure
— thus with depth!

> is the Earth molten or not?
— competition pression / temperature




early XXth century seismology

Epicentre

Mantle
» two kinds of body waves :
» sound wave "P"
» shear waves "S”
(do not propagate within fluids)

» shadow zone with no P waves
(Oldham, 1906)
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i e d = liquid core of radius r ~ 3500 km




discovery of a solid inner core
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f » unexplained phases in the shadow zone

P = solid inner core of radius r ~ 1200 km
e S (Lehmann, 1936)
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Fig 5. Scismograms of tre New 7. » 1N ANY Cases : a static picture of the

land carthquake of June 16, 1929, show-

ing that the unexplained phases are well core
recorded on the vertical component [Leh-

mann, 1936].




core formation and composition

> seismology
> geodesy (gravity field)

> accretion of planets
~4.5 Gyr ago
» chemistry of meteorites

core composition =
initial Earth — mantle

> Iron (85%) + light elements
(Si, S, Ni, 0...)
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core formation and magma ocean
experimental studies show turbulent mixing
Stevenson’s model (Deguen et al, 2014)

Mode| of Earth’s core formation
magma
ocean

solid
silicate
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sinking

metal

_ diapir

metallic
core

(Labrosse et al, 2007)



high T,P iron phase diagram
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Outlines

the geomagnetic field, signature of a moving core



Discovery of the geomagnetic field

» orientation of some natural stones (towards the South) known by
Chineses more than 2000 yrs ago

no articfact, only recorded, used for navigation
» first scientific description by P. Peregrinus (letter to R. Bacon, 1269)
idea of a dipole, oriented towards the North

Figure & Experiment of cutting lodestone to show the
appearance of magnetic pole at the new edges as
described in De Magnete.



transmission to Europe?

» first use for navigation by ltalians :
Carta Pisana (1275) of the Eastern Mediterranean sea

» first mentioned in 1375 by Arabians (who control the silk road)
... blind transmission ? independent discovery ?

» funny enough, only in French and Chinese is the word "love” used to
name magnets (but with South/North conventions reversed !)



William Gilbert : De Magnete (1600)

"Magnus magnet ipse est
globus terrestris”

e
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inclination : primarily sensitive to latitude

angle between the magnetic field and the horitontal plane
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declination : sensitive to longitude

angle between the geographic and geomagnetic Norths

Declination D in degrees 2015

180’
IGRF model (Thébault et al, 2015)

» first described with the discovery of America
(although probably already known by Dutches)
» Kaap Agulhas : | = 0 as observed by Bartolomeu Dias in 1500!



a time varying field

» 1580, London (William Borough) : D =11.5° E

» 1622, Depforth (Edmund Gunter) : D = 6.15° E
... time variation then suspected

» 1635, Depforth (Henri Gélibrand) : D ~ 4° E
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Figure 5. Reconstructed series of direct measurements of declination in Paris and London from the mid
sixteenth century to the present [see Alexandrescu et al., 1996, 1997].



no GPS! which position on the oceans?

> magnetic measurements on board : a > bad luck : almost E-W in
strategic issue for the positioning in the Northern Atlantic
longitude »

» motivated missions through the Atlantic
ocean to measure_ the declina:ion
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» summarized into historical compilations
(Jonkers et al, 2003)



Von Humboldt, Gauss...

> trip to Americas (1798-1804) » first absolute intensity
measurements (1832)

1 Gauss = 107* T
Earth ~ tilted dipole
(12.3° at that time)
mainly of internal source
(spherical harmonics)

> relative intensity measurements
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ground-based observatories
INTERMAGNET network

Dumont d'Urville

OBSERVATOIRE MAGNETIQUE DE DUMONT d URVILLE
E
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geomagnetic secular variation

> rate of change of the magnetic field at the Hermanus observatory
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» induction equation (Maxwell4+Ohm's laws) within the fluid core :

0B

E = V x (U X B) =+ ’I’]AB
secular electro-motive magnetic
variation force (source) diffusion (sink)

> time changes of the magnetic field (B) carry information on motions
(u) within the outer core!!



an era of magnetic satellites

continuous since 1999

» Pogo (USA) 1960's
» Magsat (USA) 1980
> Oersted (Denmark) 1999-2013
» Champ (Germany) 2000-2010

» Swarm (ESA, since Nov. 2013) : constellation of 3 satellites

» after Swarm?



ancient field : remanent magnetization of rocks

Magnetite
Fe304

record the field last time they cooled down below the Currie temperature
7 A ' 4 = N >

coring orientering sampling lab measurements



archeo- and paleo-magnetism
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Archeomagnetism :
> past millenia
> human artifacts
(kilns, potteries...)
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» Paleomagnetism

> past millions yrs
» lavas, ocean bottom
lake sediments




geomagnetic poles inversions
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Johnson et al (1997)

L. Gabbros

> ancient : as old as about 4 Gyr!
(Tarduno et al, 2010)

» mainly dipolar

> inversions every 100,000 yr to 1 Myr,
unpredictable
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geomagnetic dipole decay over the observatory era

> at least since 1840, at an average
rate of 15 nT/yr in average

o

> lost about 10% of its intensity in
180 yrs

> nothing exceptionnal (occurred
many times in the past millenia)

o

axial dipgle decay (nT/yg)
o

5

» strongly changing rate of change :
may raise again soon, who knows ?

0

> not necessary suggests a coming Ti0 1660 1890 1900 1920 1040 1960 1960 2000

reversal
COV-OBS field model (Gillet et al, 2013)



impact of the South Atlantic anomaly

te geomagnetic field is more than a simple dipole!

electrical anomalies of the
Topex-Poseidon satellite

 — e
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[nT]



a step towards the core

downward continuation through an electically insulating mantle

Courtesy : A. Fournier



the radial magnetic field at the core surface

here the radial componengt B, (in nT)
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Outlines

dynamics of the core, and insights from observations



global picture

» accretion process (4.5 Gyr ago) :
gravitational energy transorfmed into heat

» since then : despite radio-active heat production in the mantle,
secular cooling (slowly gives back heat to the Univers)

= heat extraction from the (solid) mantle through convection
= heat extraction from the (liquid) core : likely convection

» NB : core convection still an open question (possibility of an
stratified upper layer)

> core motions may also be mechanical forced (precession, tides...)

= in any case : motions within the metallic core
self-sustained natural dynamo (cf induction equation)



dynamo effect

> kinematic dynamo effect :
> given a motion u, can the induction equation produce a magnetic
field from a seed perturbation ?
> a theoretical issue since the 1940's

» dynamo effect (Larmor, 1919) :
account for a feed back from the generated magnetic field on the
flow (Lorentz force)

> an experimental challenge taken in 1999 (Karlsruhe, Riga)
> a numerical challenge taken in 1997 (Glatzmaier & Roberts)

} ,’j Their model
the first coherent
explanation of

magnetic field
sal.




fluid mechanics & electromagnetism

» classical physics :
- Maxwell's equations (electromagnetism)
- Navier-Stokes equations (fluis mechanics)

» particularity : rapidly rotating system (cf. ocean, atmosphere)

Elsasser Alfvén Hide
Taylor, Braginski, Moffat...



Coriolis force and fluids

rotating

credit : GFD Lab/MIT



rapidly rotating convection

experiment in water (courtesy : P. Cardin)



state of the art numerical simulations
Schaeffer et al (2017)

temperature velocity

magnetic field

. - still too dissipative!
+ Earth-like morphology ! I I'_) _IV ) o
(mainly dipolar field) - do not yet mimic rapid variations

- the closer to Earth's parameters,

+ produces polarity reversals
the less reversals occur...



alternative : laboratory experiments

» very hard : magnetic field diffuses 10° times faster than momentum !
> necessary condition : R, = UL/ > O(10)

take L = 1 m, with best available 7 ~ 1 m2/s (liquid sodium)
= U~10m/s!!

Riga (Gailitis et al, 1999)

Hall sensor
Rotation rate
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realistic physical parameters :
turbulent motions

Rotation rate [1/min]

- no global rotation

- strongly constrained flow
t[s]

- weak field intensity
weak feed-back from the
Lorentz force




Von Karman Sodium experiment
Cadarache, 2006 (CEA Saclay, ENS Paris & Lyon)
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> less constrained flow

» complex dynamical regimes : inversions, intermittence...

» but! requires ferromagnetic propellers to enhance induction !
(not properly speaking a dynamo)



Derviche Tourneur Sodium experiment

ISTerre, Grenoble

P3ED (arb. unity
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(Couette flow)
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(this is not a dynamo)
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effects (help understand
fundamental physical processes)
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other running experiments
Maryland (Lathrop et al)

~ counter

rotating
propellers

> 1 m diameter sphere (plasma) » 3 m diameter rotating sphere filled

> contra-rotating propellers with sodium !'l

(like VKS) > rotating inner sphere (Couette flow,
» no dynamo yet, transient like DTS)
induced field observed » induced fields, but no dynamo observed

» currently modify the inner sphere
roughness



towards an outer core meteorology...

mixing information from dvnamics and observations
" Aot 1200 " 4y

addapted from Barrois et al (2017)

December 1,2006.




predictions for the South Atlantic Anomaly

from geodynamo models ‘driven’ by observations (Aubert, 2015)

» field intensity at the Earth’s surface
hindcast 2015 from 1965

46° W

28’ s
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» on its way... still many
progresses to do

» improve models of core
turbulence (small length-scales)



length-of-day changes

VLBI station (credit : USNO)

» angular momentum changes of the system
core + mantle + atmosphere...
> rapid variations : atmospheric winds
» slow changes : core motions (Jault, 1988)
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diving into the core with torS|onaI Alfven waves

1st described theoretically by o4
Braginski in 1970

Rotamnaxs—c___

\ \
e _ _ - _— - _ __ ___
1940 1950 1960 1970 1980 1990 2000 2010

04- LOD changes (ms).

1940 1950 1960 1970 1980 1990 2000 2010

(Gillet et al, 2015)

» compare geodetic (observed) length-of-day changes with predictions
from core flows (reconstructed from magnetic records)

> explain independent data with waves crossing the core in 4 yrs

= the magnetic field in the core (invisible directly) must be at least 3
mT, 10 times stronger than at the core surface!



Outlines

discussion



the Earth, a thermodynamic machinery (1)

» heat extraction from the core
controlled by mantle convection
. characteristic times : 200-500
million years

» ... possibly controles core
dynamics ?
> ... signature in magnetized rocks ?

(see changes in the rate of polarity
reversals)

courtesy : E. Garnero

control mantle — magnetic field



the Earth, a thermodynamic machinery (2)

» solar wind interaction with the
Earth’s dynamo field
» NB : the Earth’s field...

> does not properly speaking
‘protects’ from high energy
particules
> but modulates the Sun-Earth
interaction
. atmospheric erosion slown down ?
» ... modulates mantle chemistry ?
> e.g. recycling of water in the
mantle
» ... decrease of the mantle viscosity

» ... affects the mantle convection

controle magnetic field — mantle



the zoo of planetary dynamos : exploration

> Pioneer : Jupiter (1973)

» Mariner : Mercury (1975)
no field detected on Venus!

» Voyager : Jupiter (1979), Saturn (1980),
Uranus (1986), Neptune (1989)

> Galileo : Jupiter (1995) and its moons
(Ganymede, lo, Calisto)

» Mars Global Surveyor (1997)
dead dynamo on Mars!

Messenger Juno Bepi-Colombo
Mercury Jupiter Mercury
2007... 2016 2019 auroras on Jupiter and Saturn



the zoo of terrestrial dynamos : so many questions

» why Venus seems to have no dynamo?

> similar to the Earth (in size and rotation rate)
> apparently no mantle convection ? different mantle rheology ?

» why is Mercury's field so weak ?

> small planet but relatively large core

» different forcing ? (2 rotations in 3 revolution... strong tides)
» how Ganymede does sustain its dynamo ?

» small planet, and our Moon has lost its dynamo long ago

» other forcing, e.g. Jovian's tides?

Visit 1, above current sheet Visit 1, below current sheet a0

RAYLEIGH

(Saur et al, 2014)



the Lunar dynamo

> unlikely of convective origin
dynamo energy from impacts, precession?

> very large field during its dynamo era,

why ?

Time Before Present (Billions of Years Ago)

(wieczorek et al, 2006)

(Purucker, 2008)
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Mars’ dynamo

» why is Mars’s crustal field so
intense 7

» has the core frozen too fast?
(smaller planet)

(Langlais et al, 2003)
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Thank you'!
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