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1 Summary
The aim of the experiment I describe below is to reproduce one of the two absolute
intensity magnetometer developed by K. F. Gauss in the 1830’s – for more details, I
refer to Becquerel (1846) and Kono (2007). At this epoch, it was already known that
a magnetized needle would oscillate in the presence of a magnetic field, and that the
oscillation period was related to the field intensity. However, this period was only a
relative measure of the magnetic field intensity, since the notion of magnetic moment
was lacking. The principle is the following:

• in a first step, one measures the oscillation period T of a magnet A in the hor-
izontal plane. We will see below in §2.1 that T is linked to the product MAH ,
with MA the magnetic moment of the magnet and H the intensity of the hori-
zontal component of the Earth’s magnetic field;

• in a second step (section 2.2), one measures the deviation angle α∗ of the magnet
A (with respect to the geomagnetic North) in presence of a secondary magnet B
(similar to A) placed at a distance d. Approximating the field of B by a dipole,
we relate α∗(d) to the ratio MA/H .

Knowing MAH and MA/H , we deduce H with no prior knowledge on the magnetic
moment of the magnets. I give some details below.

2 Theoretical background

2.1 Oscillation period of a magnetized needle
I write MA the (vector) magnetic moment of the magnet A (positionned in the hori-
zontal plane), in the presence of B the vector magnetic field of the Earth. The magnetic
torque, acting on A, along the vertical unit vector ez is

Γ = ez · (MA ×B) = MAH sinα , (1)

with H the horizontal component of the Earth’s magnetic field and α the projection
onto the horizontal plane of the angle between MA an B. The equilibrium position
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is when A indicates the geomagnetic North. We know consider small deviation an-
gles α � 1 to the North. The conservation of angular momentum for the magnet A
indicates

IA
dω

dt
= IA

d2α

dt2
'MAHα , (2)

with ω = dα/dt the angular velocity and IA the moment of inertia of the magnet.
Solutions to eq. (2) are sines and cosines of period

T = 2π
√
IA/(MAH) . (3)

2.2 Deviation angle of a magnetized needle
I now approximate the magnetic field BB of a magnet B (of magnetic moment MB),
positionned in the horizontal plane, by a dipole – Gauss gave the framework for the
dipole formulae when inventing spherical harmonics. The field intensity generated by
the magnet B, at a distance d of this magnet, is then

HB(d) ' µ0

2π

MB
d3

, (4)

where µ0 is the magnetic permeability of free space. We consider the position of
equilibrium for the magnet A, sensitive too both BB and B, with HB � B (this last
hypothesis is valid ifA is not too clse to B). It is such that MA is parrallel to B+BB.
The magnet A is then deflected from the geomagnetic North by an angle α∗ � 1,

α∗ ' sinα∗ = HB(d)/H , (5)

where d is now the distance between the two magnetsA and B. Combining eq. (4) and
(5) gives

α∗ ' µ0

2π

MB
H

d−3 . (6)

If now we consider that the two magnets A and B are similar (MB = MA), we see
that by measuring T and α∗(d), we can deduce H from eq. (3) and (6). Note that for
the second step (estimation of the deflection angle α∗) one could replace B by A, and
take any magnet instead of A.

Gauss performed this experiment in Göttingen in 1833. He estimated H by deter-
mining the two proportionality coefficients K1 and K2 for α∗ = K2d

−3 and T 2 =
K1IA (varying the moment of inertia IA by moving little masses along the magnetA).
He found H = 17.8µT.

3 Replicating this instrument in practice

3.1 Dimensions for the experiment
moment of inertia

To get the dimensions of our system, we must first know the moment of inertia of the
magnet. I will use to toy magnets ‘geomag’, that I consider as thin tall cylinders. I
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write ` their length, S = πr2 their section (of radius r = 3 mm), and m their mass –
implying a density ρ = m/(`S). The moment of inertia is thus approximately

IA =

∫ `/2

−`/2
ρSx2dx =

m`2

12
. (7)

With m = 19.4 g and ` = 11.6 cm we find IA ' 2.2 10−5 kg.m2.

magnetic moment

We also need its magnetic moment. We approximate it by that of a solenoid,

MA =
BAS`

µ0
, (8)

with BA the magnetic field inside the magnet. Taking BA ' 0.5 T, we find MA ' 1.3
A.m2. This quantity is actually note required accurately to perform the experiment.

approximate period and deviation angle

We must check that the experiment can be run with a decent size, and a decent time...
Given the values chosen above and using H = 2 10−5 T in eq. (3), I obtain T ' 5s, so
that measuring T with O(10) periods should last of the order of 1 minute. For a distance
between the two magnets of 50 cm (resp. 25 cm), the deviation angle is α ' 5◦ (resp.
α ' 35◦): the experiment easily stands on a table.

3.2 Can we neglect the torsion torque of the wire?
Several precautions must be taken when running this experiment. First, the material
for the frame should be nonmagnetic. The example shown below (Fig. 1) is built
in duraluminium. Second, the torsional torque associated with the wire carying the
magnet A should be negligeable, in comparison with the magnetic torque of eq. (1).
For a full wire, it is given by

Θ = GθI0 . (9)

Here θ = α/L is the torsion angle per unit length. The wire, of length L, will be in
nylon (actually a fishing line).

G =
E

2(1 + ν)
(10)

is the shear modulus, with E the Young modulus (between 2.6 and 3 GPa for a nylon
wire), and ν the Poisson coefficient (' 0.39 for nylon).

I0 =
πδ4

32
(11)

is the moment of inertia for the full wire. Using a fishing line of diameter δ = 0.16
mm and length L = 50 cm, one finds Θ = O(10−7) N.m (for α = 1 rad). This should
be compared with the magnetic torque. With the above magnet (of moment about 1
A.m2) we have, in the presence of an ambient fieldH = O(10−5) T, a magnetic torque
Γ ' 10−5 N.m (again for α = 1 rad). We verify the hypothesis Γ� Θ.
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Figure 1: Photos of a prototype of the absolute intensity magnetometer, inspired by the
experiment by K. F. Gauss.
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