





## How people and ecosystems organize their storage requirements

Hubert H.G. Savenije Hongkai Gao Markus Hrachowitz Lan Wang-Erlandsson

GIFT workshop Addis Ababa, November 2015



#### **Dams in the Anthropocene**



Marib dam Yemen

## Dam design

• Mass Curve Technique (Rippl, 1883)



# Are People Unique

In designing their storage this way?

#### A problem





#### **Root storage in Models**



# State of the Art to determine S<sub>umax</sub>

- 1. use a soil map (e.g.:Harmonized World Soil Database of FAO)
- 2. determine the range between field capacity and wilting point
- 3. derive the rooting depth from ecosystem maps (e.g: Land Cover Type Climate Modeling Grid created from MODIS data)
- 4. multiplication of the two gives root zone storage capacity
- 5. this method is almost universal, e.g.: Federer et al. (1996); van den Hurk et al. (2000); van den Hurk (2003); Zhou et al. (2006); Bastiaanssen et al. (2012), and many others.



#### **@AGU**PUBLICATIONS



#### **Geophysical Research Letters**

#### **RESEARCH LETTER**

10.1002/2014GL061668

#### Key Points:

- Root zone storage capacity (SR) can be estimated with mass curve technique
- Ecosystems design SR to bridge droughts with 10–40 years return period
- SR was linked to aridity index, dry spell duration, seasonality, and runoff ratio

#### Supporting Information:

- Readme
- Figures S1–S4 and Tables S1–S3
- Data set S1

#### Correspondence to:

H. Gao, h.gao-1@tudelft.nl

Citation:

Gao, H., M. Hrachowitz, S. J. Schymanski,

#### Climate controls how ecosystems size the root zone storage capacity at catchment scale

H. Gao<sup>1</sup>, M. Hrachowitz<sup>1</sup>, S. J. Schymanski<sup>2</sup>, F. Fenicia<sup>1,3</sup>, N. Sriwongsitanon<sup>4</sup>, and H. H. G. Savenije<sup>1,5</sup>

<sup>1</sup>Delft University of Technology, Water Resources Section, Delft, Netherlands, <sup>2</sup>ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland, <sup>3</sup>EAWAG, Department of System Analysis, Integrated Assessment and Modelling, Dübendorf, Switzerland, <sup>4</sup>Kasetsart University, Department of Water Resources Engineering, Bangkok, Thailand, <sup>5</sup>UNESCO-IHE Institute for Water Education, Delft, Netherlands

**Abstract** The root zone moisture storage capacity (S<sub>R</sub>) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response, and biogeochemical processes. However, it is impossible to observe directly at catchment scale. Here, using data from 300 diverse catchments, it was tested that, treating the root zone as a reservoir, the mass curve technique (MCT), an engineering method for reservoir design, can be used to estimate catchment-scale S<sub>R</sub> from effective rainfall and plant transpiration. Supporting the initial hypothesis, it was found that MCT-derived S<sub>R</sub> coincided with model-derived estimates. These estimates of parameter S<sub>R</sub> can be used to constrain hydrological, climate, and land surface models. Further, the study provides evidence that ecosystems dynamically design their root systems to bridge droughts with return periods of 10–40 years, controlled by climate and linked to aridity index, inter-storm duration, seasonality, and runoff ratio.

Gao, H., et al., 2014. Geophysical Research Letters, 41, 7916-7923, doi: 10.1002/2014GL061668

## **Upper Ping, Thailand**



#### 6 sub-catchments



#### **Gumbel extremes**



# Comparing design storage with calibrated storage



Hongkai Gao, GRL

### Validation on Mopex Data Set



#### 20 year Return Period



#### **7** Different Eco-regions



Eco-region according to Wiken et al. (2011)

# Can this also be done at Global level?

#### Recalculate Storage on basis of ERA-Interim

Year 2003-2010



Work in progress by Lan Wang-Erlandsson

0

#### **Rippl with Earth Observation data**



DATA (0.5° resolution)

• *P:* CRU

- E: Mean of SSEBop and MODIS 16
- period 2003-2013
- Global coverage

#### Results

S<sub>R,CRU</sub>, 2003-2013



- S<sub>R</sub> < 300 mm in most regions
- $S_R > 300 \text{ mm}$  in equatorial regions marked by seasonality





#### Comparison

Less variations in S<sub>R,SCHENK</sub>, and S<sub>R,STEAM</sub>

ШШ

шп

ШШ

шШ

0

0

0

0

-250

-500+

-250

-250

-250

- S<sub>R,SCHENK</sub>, and S<sub>R,STEAM</sub> both low in Amazon rainforest
- $S_{\text{R,KLEIDON}}$  often larger than  $S_{\text{R,CRU}}$

## **Drought frequency analysis**



• The S<sub>R</sub>:s for 2003-2012/2013 correspond to S<sub>R,10yrs</sub>-S<sub>R,20yrs</sub>

Root zone storage capacity distribution by land-use



#### **Vegetation takes risks**



# Correlation to climatic variables



#### Separating different evaporation fluxes

Earth Syst. Dynam., 5, 441–469, 2014 www.earth-syst-dynam.net/5/441/2014/ doi:10.5194/esd-5-441-2014 © Author(s) 2014. CC Attribution 3.0 License.





#### Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land

L. Wang-Erlandsson<sup>1,2</sup>, R. J. van der Ent<sup>1</sup>, L. J. Gordon<sup>2</sup>, and H. H. G. Savenije<sup>1</sup> <sup>1</sup>Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands <sup>2</sup>Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

Correspondence to: L. Wang-Erlandsson (1.wang-2@tudelft.nl)

Received: 25 February 2014 – Published in Earth Syst. Dynam. Discuss.: 14 March 2014 Revised: 31 July 2014 – Accepted: 22 October 2014 – Published: 5 December 2014





1.5° latitude x 1.5° longitude3 hours time stepLand-use fraction representation

Wang-Erlandsson et al. (2014), ESD.



#### Models are alive !





# Root zone storage is the result of co-evolution



# Root zone storage is essentially the result of an ecosystem interacting with the climate

#### **References:**

Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N. and Savenije, H. H. G.: Climate controls how ecosystems size the root zone storage capacity at catchment scale, Geophys. Res. Lett., n/a–n/a, doi:10.1002/2014GL061668, 2014.

Kleidon, A.: Global Datasets of Rooting Zone Depth Inferred from Inverse Methods, J. Clim., 17(13), 2714–2722, doi:10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2, 2004.

Kleidon, A. and Heimann, M.: Optimised rooting depth and its impacts on the simulated climate of an atmospheric general circulation model, Geophys. Res. Lett., 25(3), 345–348, doi:10.1029/98GL00034, 1998.

Kleidon, A. and Heimann, M.: Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation, Clim. Dyn., 16(2-3), 183–199, doi:10.1007/s003820050012, 2000.

Schenk, H. J.: The Shallowest Possible Water Extraction Profile: A Null Model for Global Root Distributions, Vadose Zo. J., 7(3), 1119, doi:10.2136/vzj2007.0119, 2008.

Schenk, H. J. and Jackson, R. B.: ISLSCP II Ecosystem Rooting Depths, in ISLSCP Initiative II Collection, edited by F. G., G. Collatz, B. Meeson, S. Los, E. B. de Colstoun, and D. Landis, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A., 2009.





