

GEOSCIENCE INFORMATION FOR TEACHERS WORKSHOP EGU GENERAL ASSEMBLY 2019

Plate tectonics and climate: what's new since Wegener and Köppen?

Gilles Ramstein (Research director at CEA – LSCE)

In order of appearance:

Yves Godderis (GET Toulouse), Yannick Donnadieu (CEREGE Aix-Marseille), Guillaume Lehir, (IPG Paris), Jean Besse (IPG Paris), Frédéric Fluteau (IPG Paris), Zhongshi Zhang (IAP Beijing/Bergen university), Camille Contoux (LSCE), Mathieu Schuster (EOST Strasbourg), Baohuang Su (IAP Beijing), Dabang Jian IAP Beijing), Ran Zhang (IAP Beijing), Pierre Sepulchre (LSCE).

Continental drift & climate change

ALFRED WEGENER 1880-1930

WLADIMIR PETER KÖPPEN 1846-1940

&

Astronomer and meteorologist

Meteorologist, climatologist, botanist,

January 1912: A. Wegener 1st conference in Francfort on continental shift. 1915: A. Wegener 1st edition of his book concerning ocean and continent genesis 1924: A. Wegener and W. Köppen Die Klimate der Geologischen Vorzeit 1968: a full theory of tectonics Since 1930: a first correlation between tectonics, climate and glacial-interglacial cycle already existed

The carbon cycle/climate/tectonics feedback at geological time scale

Regulation of the climate system at million year scale: tectonics, climate and pCO2.

James G. C. Walker University of Michigan

Continental distribution drives pCO2 and climate at long term scale

Some illustrations of climate-tectonics interactions:

- The role of continental drift in triggering Neoproterozoic snowball earth
- The disappearance of an epicontinental sea (Tethys shrinkage)
 - Asian monsoon system
 - African monsoon system
- Uplift of mountain ranges
 - TP-Himalaya uplift
 - African rift uplift

The exospheric cycle of carbon at million -year time scale.

Mechanisms of long time global cooling

First illustration

A dramatic cooling of the Earth driven by tectonics configuration

How carbon cycle and hydrology produced a large climatic transition in the specific paleogeography of Neoproterozoic (717-635 Ma).

Why did a snowball earth occur during Neoproterozoic ?

Yannick DONNADIEU CEREGE, Aix-Marsaille

Guillaume LE HIR IPG, Paris

Yves GODDERIS GET, Toulouse Climate CO2 interactions within Geochemical models of Geochemical (COMBINE) and Climate models (CLIMBER) to test trap impact

First Results

The coupled Carbone-Climate model reaches equilibrium for pCO2 = 1800 ppm

The tropical location of the continental mass does not appear to have a large impact on temperature.

Nevertheless the mean annual temperature is rather cold:10.2 °C

Donnadieu et al, Nature 2004

First Results

1 – A 750 Ma

The coupled Carbone-Climate model reaches equilibrium for pCO2 = 500 ppm

>> reduction of 1300 ppm

A continental distribution corresponding to small continents in equatorial locations appears to enhance the decrease of CO2 (extensive burial along margins) and leads to global glaciation

Donnadieu et al, Nature 2004

Impact on the CO2

Second illustration

The shrinkage of a huge epicontinental sea: the paraTethys since Eocene produced drastic monsoon changes

1.Over Asia

2. Over Africa

Paleogeography:

Ramstein et al., Nature, 1997. Fluteau et al.; JGR, 1999

Temperature evolution

Present - 10 Ma

10 Ma - 30 Ma

Ramstein et al., Nature, 1997. Fluteau et al.; JGR, 1999

Tethys shrinkage: impact on Asian monsoon (3)

In response to the Paratethyssea retreat

In response to the Tibetan uplift

Summer precipitations difference

Jean BESSE IPG, Paris

Frédéric FLUTEAU IPG, Paris

Ramstein et al., Nature, 1997. Fluteau et al.; JGR, 1999

Tethys shrinkage: impact on African monsoon (1)

After a slow shrinkage, since 30 million years, this huge epicontinental Tethys sea, spread from East to Western Asia finally vanishes

Zhongshi ZHANG IAP, Biejing Bergen, Norway

Mathieu SCHUSTER EOST, Strasbourg

Camille CONTOUX LSCE, Paris-Saclay

Impact of the Tethys shrinkage over North Africa Sahara Onset

Zhang et al; Nature 2014

Annual precipitation (mm) averaged over north Africa (between 25°N and 35°N, 12°W and 38° E, in the Late Oligocene (LO), Early Miocene (EM), Late Miocene (LM) and modern experiments (Mod.)

An increased response to orbital forcing

- Climate response to increased summer insolation in the Northern Hemisphere before and after Tethys shrinkage
- Change between today and 6 kyr ago.

Shading: annual precipitation (mm) Arrows: 850-hPa summer winds (m.s⁻¹)

Megalake Chad and hominids

Abel, 3.6 Ma (Brunet et al., 95)

Toumaï, 7 Ma (Brunet et al., 2002)

Megalake Chad oscillations: from the end of Miocene to Pliocene

Pliocene and our ancestor environment (Abel, Australopithecus bahrelghazali, 3.6 Ma)

Megalake Chad impact on climate and environment during Pliocene (Contoux et al., Clim. Past, 9, 1417–1430, 2013)

More than during the Holocene, during Pliocene many frequent occurrences of Megalake Chad, with an area of 350 000 to 400 000 km²

Accounting for the Megalake Chad as a boundary condition for the zoom model we can simulate climate and associated vegetation. This vegetation enable human setting near by the lake.

Mountain ranges uplift and climate changes

1. Northward shift of Tibetan Plateau (TP) from *tropics to subtropics*

2. The TP uplift impact on meridional ocean circulation

3. The African rift uplift

Results from model runs with modified topography and surface albedo

Precipitation and 850 hPa horizontal winds: anomalies relative to Ctrl

Boos and Kuang, Nature 2013.

Impact of Tibetan Plateau Uplift (2)

Northward shift of the TP from Indian-Asian collision to present day

Topography and bathymetry (units: m) used in the \sim 40 Ma experiments by NorESM-L.

Ran Zhang IAP Beijing

Dabang Jiang IAP, Beijing

Summer (left) and annual (right) SSTs used in the \sim 40 Ma experiments by CAM4.

R. Zhang et al. EPSL, 2018

Interaction between hydrology and mountain range location

Rise of the Himalaya–TP in the subtropics \rightarrow intensifies aridity throughout inland Asia north of ~40°N and enhances precipitation over East Asia.

Rise of the Himalaya–TP in the tropics \rightarrow only slightly intensifies aridity in inland Asia north of ~40°N and slightly increases precipitation in East Asia.

R. Zhang et al. EPSL, 2018

Distribution of the monsoon domain

R. Zhang et al. EPSL, 2018

Distribution of the monsoon domain, with the definition by Wang et al., (2012), with the summer-minus-winter precipitation exceeding 2.0 mm day–1 and the local summer precipitation exceeding 55% of the annual total precipitation. The summer (winter) here is from May to September (November to March).

Consequence of uplifts of TP and Himalaya on global ocean circulation PMOC/AMOC

B. Su et al., Clim Past, 2018

Model used: CESM version 1.05 Low resolution (T31) atmosphere ocean coupled model Including dynamical and thermal sea ice model

Climatological annual mean overturning stream function

B. Su et al., Clim Past, 2018

Baohuang Su IAP Beijing

Dabang Jiang IAP, Beijing

positive shading : clockwise circulations. negative shading : counterclockwise circulations.

Summary scheme of TP removal impact on meridional ocean circulations

B. Su et al., Clim Past, 2018

Vectors in gray : climate responses in relation to the increased windinduced and decreased monsoonal-driven net precipitation-evaporation and wind-driven sea-ice processes.

Black color vectors: feedback processes related to the AMOC weakening.

Impact of African Rift Uplift (1)

Climatic impact of the African Rift Uplift

Pierre SEPULCHRE LSCE, Paris-Saclay

Different topographic scenarios

Sepulchre et al., Science, 2006

Impact of African Rift Uplift (3)

20°N 20"N 2200 20°N 3600 1800 3200 10"N 1400 10"N 10°N 2800 1000 2400 600 0* 0* 0* 2000 200 1600 -200 10*5 10*5 10*5 -600 1200 -1000 800 20*5 20*5 20*5 ٠ -1400 400 -1800 30*5 0 30°S 30°S 30"E 20*E 40*E 60*E BD*E 30°E 40"E 50*E 20°E 30°E 40°E 50°E 60°E 20°E Sepulchre et al., Science, 2006 8 8 Е D 7 Ŧ 6 Ţ ł Ŧ Ŧ 5 5 mm/day mm/day T. Ξ Ŧ 4 4 Ŧ Ŧ Ŧ 3 A Control 2 Traps 1 1 Norift 0 0 N D S 0

D

0

Ν

Increase in rainfall

Changes in vegetation cover

Sepulchre et al., Science, 2006

What's next ?

In the long term (million of years), the relationship between tectonics, pCO2 and climate, will still be appropriate

At short term scale, the perturbation we produce will modify drastically the climate

Anthropocene experiment (1)

A big firework

Moreover, the context is cold, with ice cap in each hemisphere

Anthropocene experiment (2)

The population is approximately 7.3 billion in 2015 and will reach approximately 9,3 billion in 2050. An important part of the world population lives close to costal regions.

World population in 2000

World population in 2050

ACKNOWLEDGEMENTS:

- ECLIPSE/CNRS/INSU
- AURORA PROJECT: NORWAY(BERGEN)-FRANCE(LSCE)
- CAI YUANPEI: IAP-IGG (BEIJING)/LSCE (FRANCE)
- ANR HADOC PROJECT, GRANT ANR-17-CE31-0010 OF THE FRENCH NATIONAL RESEARCH AGENCY

Thanks

Atmospheric circulation changes in different contexts

R. Zhang et al. EPSL, 2018

41

Comparison of wind seasonality due to the surface uplift of the Himalaya–TP. Red arrows : summer 850hPa (low atmospheric level) Black arrows : winter 850hPa winds (units: ms–1). Blue areas: angles between summer and winter winds are greater than 100°

Changes in annual precipitation and vertically integrated water vapor transport due to the surface uplift of the Himalaya–TP.

R. Zhang et al. EPSL, 2018

AUSTRALOPITHECUS (plus de 3 millions d'années) Volume cérébral : ~ 400 cm³

HOMO SAPIENS L'Homme moderne Volume cérébral : de 1230 à 2 000 cm³