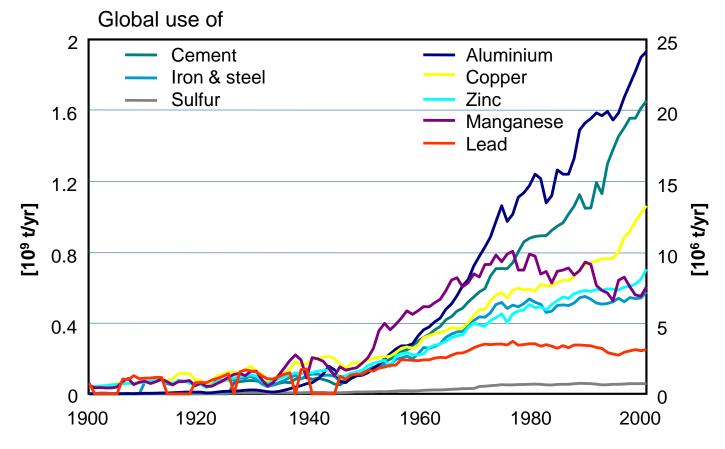


European Geosciences Union – General Assembly GEOSCIENCE INFORMATION FOR TEACHERS (GIFT) WORKSHOP Austria Center Vienna, 12-15 April 2015

CITIES: TOMORROW'S MATERIAL RESERVOIRS


Helmut RECHBERGER

Institute for Water Quality, Resource and Waste Management

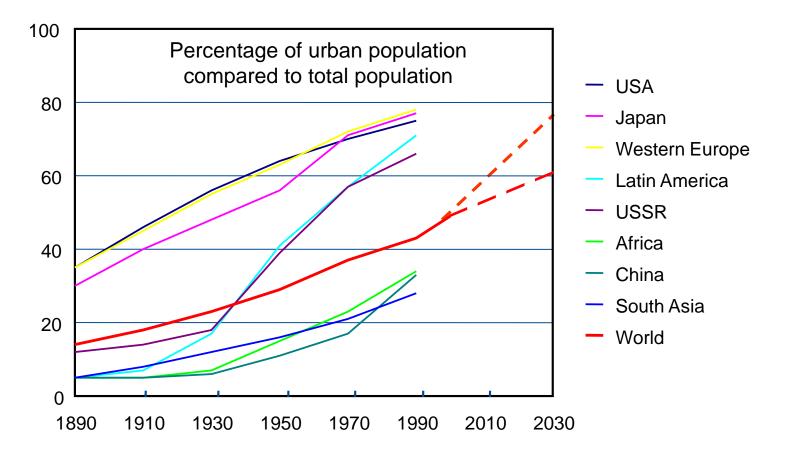
Vienna University of Technology

Growing consumption of resources

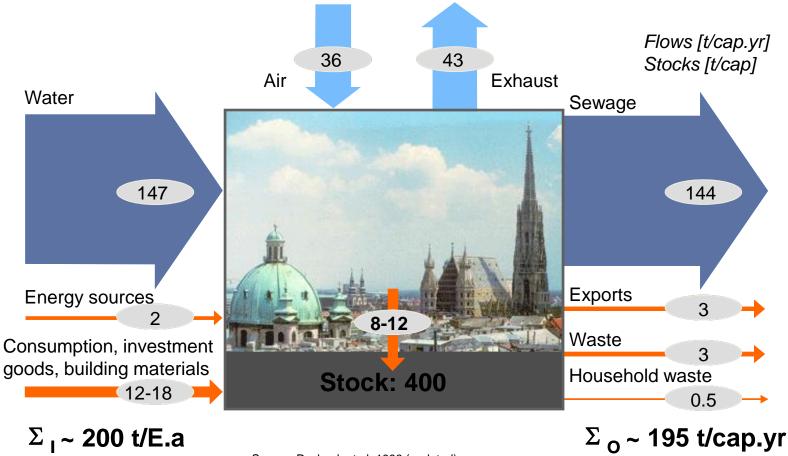
Source: Brunner & Rechberger 2004

The resource consumption over a person's life

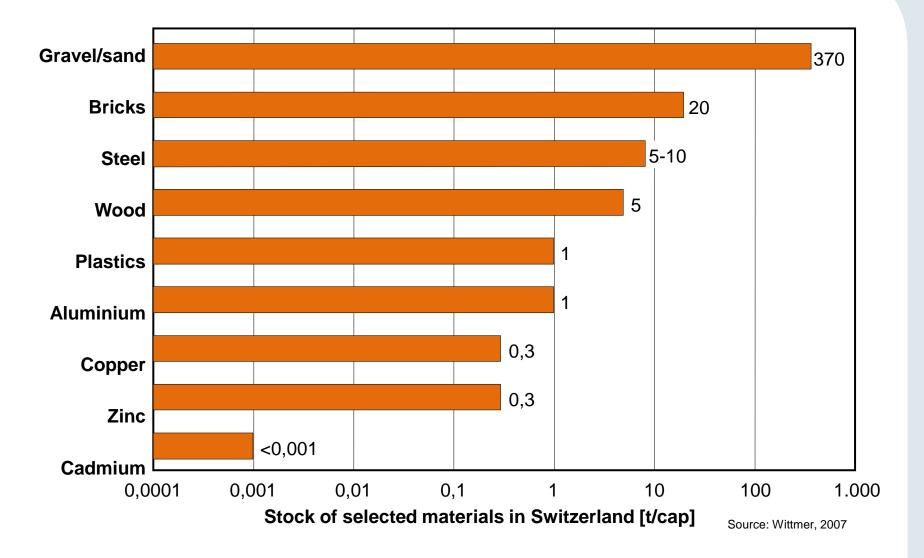
Sand and gravel	307 t
Lignite	158 t
Hard rock	130 t
Mineral oil	116 t
Natural gas (1000 m ³)	90
Limestone, dolomite	72 t
Hard coal	67 t
Steel	40 t
Cement	29 t
Rock salt	12 t
Gypsum	8,5 t
Industrial sand	4,7 t
Kaolin	4,0 t
Potash (K ₂ O)	3,4 t
Aluminium	1,7 t
Copper	1,1 t
Steel refiners	0,9 t
Sulphur	0,2 t
Asbestos	0,16 t
Phosphate	0,15 t
Electricity (MWh)	290


1000 tons

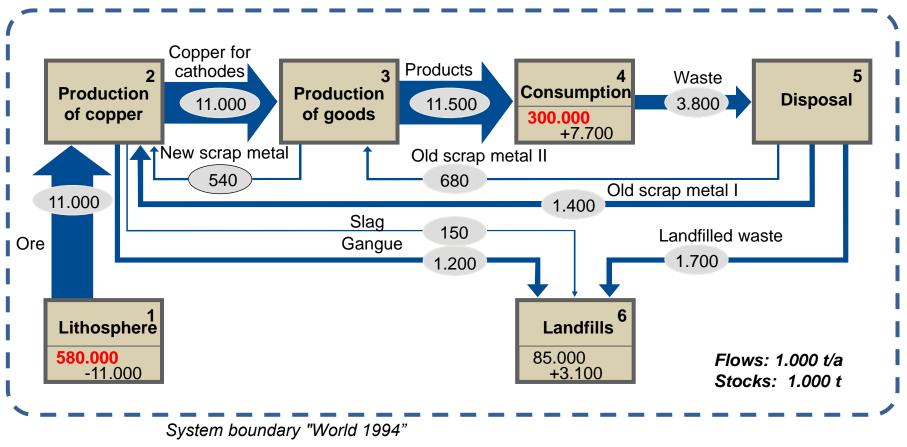
or ca. 670 cars


Source: BGR, Germany

Urban way of life is getting dominant

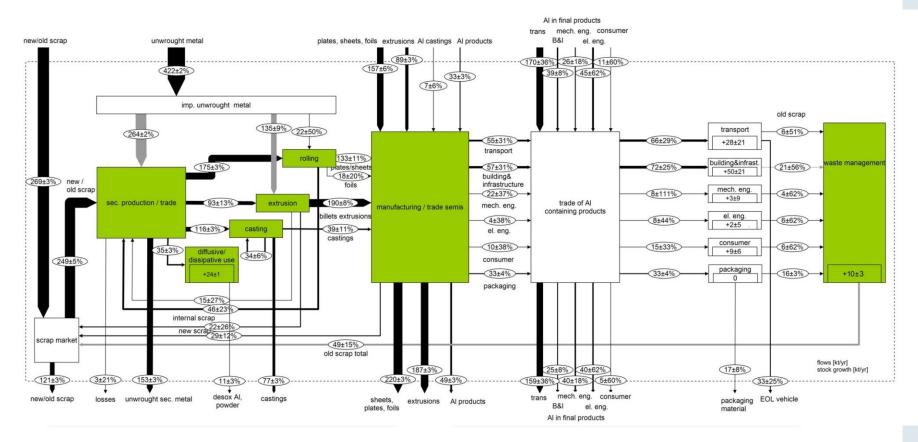

Sources: McNeill 2003; UN Population Division 2002

Cities are becoming "heavier"



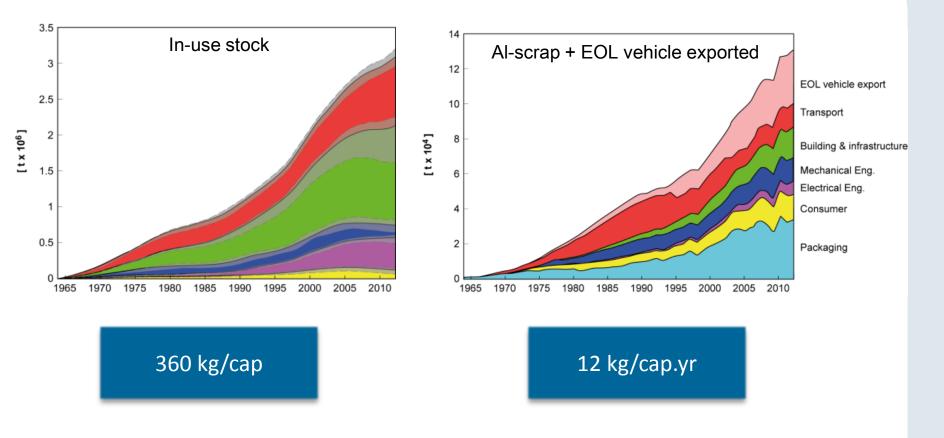
Source: Daxbeck et al. 1996 (updated)

Composition of the urban stock



Primary and secondary stocks same order of magnitude (example copper)

Source: Graedel et al. 2002 (completed)


Aluminium balance, Austria 2010

Buchner et al., 2014, In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency

DI.IV/Cities: Tomorrow's material reservoirs

Selected results from the dynamic model

Buchner et al., 2015: Dynamic material flow modelling: An effort to calibrate and validate aluminium stocks and flows in Austria (submitted)

Resource potential of built infrastructure

Material composition of different building types in Vienna

- Case studies (investigation of buildings before demolition based on available documents, inspection, and selective sampling)
- Construction files of demolished buildings
- Tender documents, final bills, LCA-Data of new buildings
- Literature

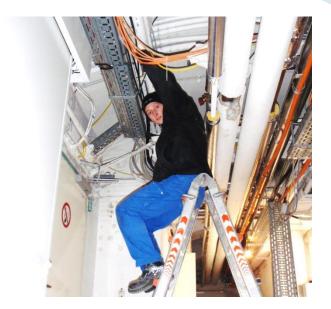
Analysis of the building structure to estimate the overall material stock of buildings in Vienna

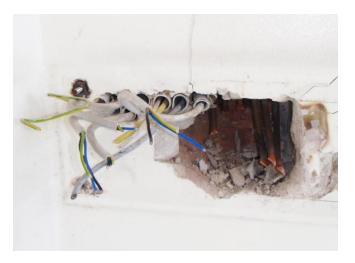
- Based on: GIS-data (size, period of construction, utilization), and
- the material composition of different building types

Estimation the material output from demolition activities in Vienna

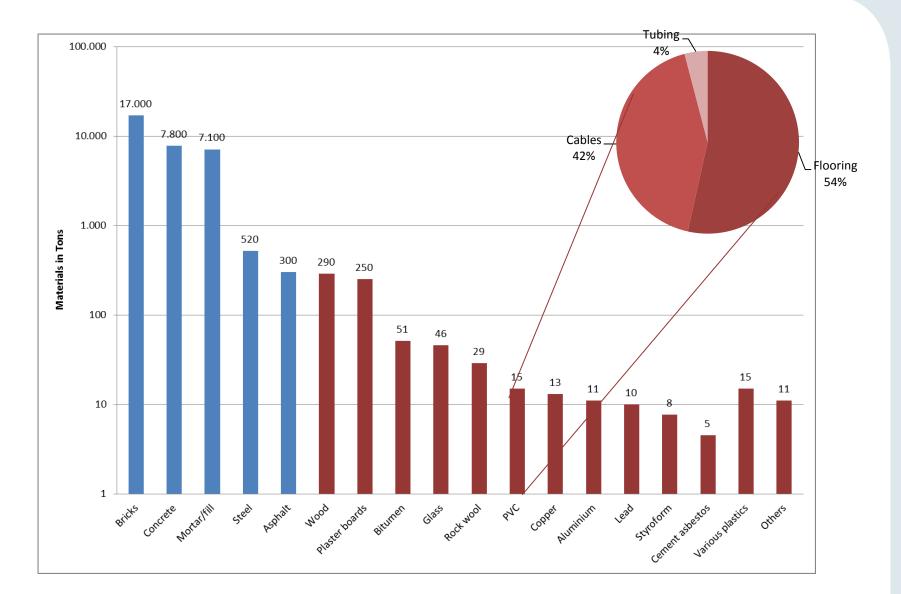
- Based on: information about demolition activities in Vienna (construction files of demolished buildings, data from remote sensing), and
- the material composition of different building types

Kleemann, F.; Lederer, J.; Aschenbrenner, P.; Rechberger, H.; Fellner, J. A method for determining buildings' material composition prior to demolition, *Building Research & Information*, 43, 0, 1-12, 2015.


Selected investigated buildings



On-site investigation



Result for single building

DI.IV/Cities: Tomorrow's material reservoirs

Material composition [kg/m³ gross volume]

Material	CS1 1970	CS2.1 1870	CS2.2 1960	CS2.3 2003	CS3 1930	CS4 1890
Minerals	430	420	410	320	260	450
Steel	7.6	5.1	4.6	8.6	5.8	0.97
Aluminium	0.22	0.049	0.057	0.55	0.03	0.16
Copper	0.11	0.15	0.16	0.24	0.0019	0.062
PVC	0.52	0.19	0.21	0.18	0.0093	0.2
Wood	2.3	4.3	2.2	0.62	3.6	20
Asbestos	1.5	0.04	-	-	0.14	-
Other plastics	1.3	0.16	0.35	4.9	0.14	0.46
Others	1.1	0.54	1.2	0.69	0.43	0.13
Total	440	430	420	340	270	470

DI.IV/Cities: Tomorrow's material reservoirs

۵.

٠

				~ / * • /	
	•	Hupp	Building		••
	~ <u> </u>		mormation	Height [m]	17.7
and the second				Area [m²]	443
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Volume [m³]	7823
				Utilisation	Dwelling building
				Period of construction	before 1918
	$\left\langle \cdot, \cdot \right\rangle = \left\langle \cdot \right\rangle$		Material		
the state			composition		
				Mineral material [t]	3400
				Steel [t]	23
• •				Aluminium [t]	0,66
Height and area of buildings				Copper [t]	0,74
	······	• •		PVC [t]	2,3
Utilisation and period of construction of buildings				Wood [t]	67
	8 3			Cement asbestos [t]	0,73
	·	•• 🙀		Other plastics [t]	1,8
				Others [t]	4,1
Material information			4		• 17

· Co

(Q) •

۰

۵.

• []

٠

•(6

167

٠

#### How far have we come....and what is ahead?

- ✓ We have methods and knowledge to determine the anthropogenic stock
- $\rightarrow$  We need to classify into reserves and resources
- $\rightarrow\,$  We need to provide sound prediction about waste generation

