GIFT Norkshop JEGU 2017, Wien

LIVING IN A CALDERA

The case of Campi Flegrei, Italy

Paolo Papale

Istituto Nazionale di Geofisica e Vulcanologia

Sezione di Pisa

Kanaga, Alaska

Fujii, Japan

SIRATOVO

Colima, Mexico

Cotopaxi, Ecuador

CALDERAS

Kaguyak, Alaska

100 M

Santorini, Greece

Caldera formation mechanisms

Example from Crater Lake caldera, OR, US

source: USGS

Campi Flegrei, Italy

Yellowstone, Wyoming

Campi Flegrei, Italy

Comparison between energies from volcanic eruptions, other natural events, and that of the Hiroshima atomic bomb

Event	Energy (Tons TNT)				
	Minimum	Maximum			
Landslide (Stromboli 2002)	100	1000			
Tornado	1000	10000			
Hiroshima bomb	10000	100000			
Eruption of Mt. St Helens, 1980, or of Vesuvio, 1631	One thousand times larger than the Hiroshima bomb				
Campanian Ignimbrite eruption, Campi Flegrei, 39 ka BP: caldera formation	One million times larger than the Hiroshima bomb				
Impact with asteroid (recurrence 100,000 years)					

Volume of products from historical eruptions

Volumi di materiali emessi dalle eruzioni storiche più importanti

Magnitude of eruptions during last 5,000 years of activity at Campi Flegrei

AD 1538 Monte Nuovo

500 thousands people living inside the Campi Flegrei caldera

Campi Flegrei

Ischia

Vesuvius

Naples

About 3 million people exposed to volcanic hazard

Naples and Vesuvius, today

The area of dispersal of volcanic ash during the Campanian Ignimbrite eruption at Campi Flegrei, ca. 39,000 years ago

In yellow: flow deposits of the Campanian Ignimbrite eruption

Deposits of the Neapolitan Yellow Tuff eruption of Campi Flegrei, ca. 15,000 years ago, in the city of Naples

Phreatic explosions may occur as a consequence of pressure accumulation close to the surface

They are extremely difficult to anticipate

La Solfatara, Campi Flegrei

La Solfatara di Pozzuoli ~2000 ton d⁻¹ CO₂ flux

Thermal image

Numerical simulations of pyroclastic flows from a medium scale eruption originating in the Agnano Plain, Campi Flegrei

Red zone: potential invasion by pyroclastic flows

Yellow zone: potential severe damage from volcanic ash accumulation

PREPAREDNESS:

How to anticipate the occurrence of an eruption?

Calderas often display unrest dynamics that if observed at stratovolcanoes, they would almost certainly culminate into an eruption

Forecasting the occurrence of an eruption at calderas is much more difficult than for stratovolcanoes

<image><text>

Severe damages to edifices in Pozzuoli during the 1982-84 bradiseismic crisis

b

Summer 1983

40,000 people relocated

Dominant subsidence since Roman times

Campi Flegrei caldera, Italy

Change in the trend of deformation with the new millennium

InSAR image of recent deformation at Campi Flegrei

showing uplift of the central caldera portion

Coastal line (red) and beach (orange) in Pozzuoli, until the fifties of last century

From magma dynamics...

... to ground movements...

Blue lines: computed

Black lines: observed

RABAUL caldera, Papua New Guinea

Okmok caldera, Aleutian Arc, US

Long Valley caldera, California, US

Yellowstone caldera, Wyoming, US

CALDERAS: the "hot" questions

• what's the relative roles of magma and hydrothermal circulation in determining unrest dynamics at calderas?

 why so often large unrest dynamics do not culminate in an eruption, whereas instead variations much smaller in duration and amplitude may do?

how to anticipate the occurrence of eruptions at calderas?

Di Lorenzo, Acocella, Scandone, 2013 (redrawn)

(project INGV-DPC 2012-13 - report)

Probabilistic approach to eruption forecast Application to Campi Flegrei crisis 1982-1984

time 4 m :22 s

Campi Flegrei tomorrow?

THANKS

An	and the second second
withmen	
Harmy War	E.S.a
Man May man	
- Man Man	Edian
	C.S.

Principles of seismic tomography

3D velocity model and hypocenters + Mannon Mannon ----material and the second worder and the state of the second and the second a O Km -hallestatellasticherstichten wir hard and and a state 1 Km We make m 1 2 Km shan MUUMAAN as and the Mathematical Adaption of the second s مرورسانهم 3 Km in maning the work of the second

Campi Flegrei – Pre-eruptive Event Tree

ELICITATION V	/	BACKGROU	ND Gra	ay ea	UNREST	Gray area	,	MAGM. UNREST	Gray area	ERUPTION
VF $(M > 0.8)$ [LP/VLP/ULP [e] Rate uplift [c] Uplift T Pisciarelli VLP/ULP Deep VT $(M > 0.8)$ [Deep LP $(> 2 \text{ Km})$ [Disp. Hypecenters	[ev/day] ev/month] cm/month] [cm] [ev/day] [ev/day]		5 2 0.7 2 100	15 10 1.3 6 110		5 1 2 3	15 5 20 20		1	2
Tremor Deep Tremor (>3.5 Km) Acc. seismic events Acc. RSAM New fractures	נגווין		C M	EL ET	_PHI HOD			YES	1 .	YES YES YES YES
Macr. (dm) variation in def. Migr. max uplift Ext degassing Magm. comp. gases HF - HCI - SO2 Phreatic activity					YES			YES YES		YES YES YES YES
Red parameters: Seismicity Green parameters: Deformation Blue parameters: Geochemistry			Boolean parameters are represented by "YES" "Gray areas" correspond to variable probability of being in the adjacent states, depending on the measured values					YES" ability of n the	after Selva et al., 2011	

CALDERAS: why are they different?

 The structure of calderas is profoundly different from that of stratovolcanoes

- "negative" as opposed to "positive" edifice
- boarder faults
- chaotic rock assemblage
- development of large geothermal circulation
- resurgency
- compressional/extensional portions
- several distinct post-collapse vents
- ...