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From observations
at the surface:

- Geologic change:
expresses a long
time history

- Tectonic change:
great forces arise
from the deep
Interior

MAIN QUESTION:
How Is surface

geology linked to
the deep interior?
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Models of Mantle Dynamics

- A model is a representation of some a physical process
- A model should be useful for understanding the process
- A model should be testable in some way

“All models are wrong but some are useful.” [George Box,1987]

A Plume
Experiment in
Corn Syrup




How Convection Works

Fluid cools by losing heat from surface

Cold Fluid

Dﬁﬂﬁﬂ(’

LJ L,_) LJ (,J L,‘/ Hot Fluid

Rises

b tiead 1

Convection cell
Warm, low density fluid rises
Cool, high density fluid sinks




(a) 20880s

Laboratory
experiment of
convection in a
tank of corn syrup.

Lithgow-Bertelloni
et al. [2001]

(b) 562205

Tank Is
getting
hotter
with
time

(c) 882005




The Rayleigh Number is a dimensionless
parameter that measures the vigor of convection:

r= density (3300 kg/m°)
g = gravity (10 m/s®)
A gaDTD3 a= thermal expansivity (3x10° K™)

DT = Temperature contrast across mantle (3000 K)

kh D = Depth of Mantle (2860 km)
k = Thermal diffusivity (10° m?/s)
H = Mantle viscosity (107 Pa s)

Ra

Convection occurs if Ra > 657
Using these parameters for the mantle: Ra,, ~ 7 X 107

- This “model” implies vigorous convection in the mantle



Laboratory
experiment of
convection in a
tank of corn syrup.

Lithgow-Bertelloni
et al. [2001]

Rayleigh
number is
getting larger
with time

- Vigorous
Convection!




How to solve for mantle dynamics using a computer:

1. Express the physics of convection using equations

Conserve Mass: V-v=0
Conserve Momentum: -Vp +nVv +f =0
Conserve Energy: OT/ot + v - VT = kKV2T + H/IC

2. Solve these equations for the mantle geometry

(c) S. Labrosse

Stéphane Labrosse website



How to solve for mantle dynamics using a computer:

1. Express the physics of convection using equations

Conserve Mass: V-v=0
Conserve Momentum: -Vp +nVv +f =0
Conserve Energy: OT/ot + v - VT = kKV2T + H/IC

2. Solve these equations for the mantle geometry

An grid useful
for the mantle
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How to solve for mantle dynamics using a computer:
1. Express the physics of convection using equations
2. Solve these equations for the mantle geometry

3. We must make some major simplifications:
- Our model will have less complexity than Earth
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How to solve for mantle dynamics using a computer:

1. Express the physics of convection using equations
2. Solve these equations for the mantle geometry

2. We must make some major simplifications
3

. We must make some major assumptions:
- We can’t be sure of the interior structures

How stiff is the mantle?

—> Cold temperatures
make rocks stiffer

—> The tectonic plates
should be very stiff!

Arnauld & Coltice [2018]



How stiff are the plates?

log(Viscosity)

Weak plates
- Deformation is distributed
across the plate

Red = no deformation

Blue = fast deformation

Tackley [2000]



How stiff are the plates?

log(Viscosity)

Weak plates
- Deformation is distributed
across the plate

Red = no deformation

Blue = fast deformation

Strong plates
- The plates cannot deform

Tackley [2000]



How stiff are the plates?

log(Viscosity)

Weak plates
- Deformation is distributed
across the plate

Intermediate stiffness
- Deformation is localized
at plate boundaries

Strong plates
-> The plates cannot deform

Red -2 no deformation

Tackley [2000] Blue - fast deformation



How stiff are the plates?

log(Viscosity)

Weak plates
- Deformation is distributed
across the plate

The most Earth-like model!

Intermediate stiffness
- Deformation is localized
at plate boundaries

Strong plates
-> The plates cannot deform

Red -2 no deformation

Tackley [2000] Blue - fast deformation



Mantle Convection: The role of plate motions

Crameri & Tackley [2016]



Testing Mantle Convection Models
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Arnould & Coltice [2018]

Is this a useful representation of plate tectonics?
- How to test this model?



€ Mantle Flow Model

How do they compare?

Observation:
econstruction W

[Arnould &
Coltice, 2018]
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/ comparisons:

—> Spacing of boundaries

- Length & Width of boundaries
—> Duration of boundaries

- Deformation rate

—> Migration rate of boundaries
- Boundary type

[Arnould &
Coltice, 2018]
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Surface

The Domain of Models
- How to test them?
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Seismology shows us a snapshot of mantle structures
- What is the flow pattern?

S40RTS

shear velocity variation from 1-D

Warmer Colder




Global Mantle
Circulation
Models

Input:
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Global Mantle
Circulation
Models

Input:

 Mantle
Densities

 Mantle Viscosity

‘ + Mantle Cross Section
Output of Model: A= r —— Flow Velocity
a7 TN

—— Plate Velocity #
e Mantle Flow Y 4

e Tectonic Forces
e Surface
Deformation

|

Compare to

Present-c!ay LLSVP = Large Low Slow-Velocity Province
Observations = Continent-sized structures on the CMB




Observed Plate Motions

motions!

The flow model
predicts plate
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Subduction zone age (Ma)

Looking backward in time

- Subduction locations
have mostly remained
the same for 300 Myr!




Long-term
stability for
Intraplate
volcanism

- Hotspots

- Flood Basalts
- Diamonds

Kilauea Volcano
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Plumes rise from the
edges of the LLSVPs
(dense regions on the
core-mantle boundary)

Torsvik et al., [Nature, 2010]



Why do plumes rise from
the LLSVP edges? Heyn et al. [2018]
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- Plumes erupt from the LLSVP edges
- LLSVPs remain stable (!)

Temperature



Torsvik et
al. [2016]
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27 deep-rooted mantle plumes
& (O (French & Romanowicz, 2015)
Small arrows: inferred D" flow
directions near the plumes

Purple colour: 6 plumes

Long-Term Stability for

Mantle Dynamics (!!!)

e Stable LLSVPS

e Stable circumpolar
belt of subduction

- Stable flow pattern:
For how long?
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Sea Level

Dynamic
Topography:
Deflection of the
surface by mantle flow
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The continents move relative to the stable mantle flow.

—> They should uplift or subside as they drift over the flow pattern.
- Compare to flooding observations on continents.

250 Ma
e e ———
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Dynamic Topography (km)




The continents move relative to the stable mantle flow.

—> They should uplift or subside as they drift over the flow pattern.
- Compare to flooding observations on continents.

Global topography at 105 Ma [Blakey]



Caution: Geologic constraints can be complex!

Example: Many factors affect sea level change

C) Sea level change due to geologic deformation

hew sea surface
.

"—-*. increased

sedimentation

increased degassing

faster
spreading
ocean island
emplacement

hot
mantle
upwelling

flow of
hydrated
mantle

decreased
water loss

hydrated to mantle

mantle

Conrad [2013]
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Models can help
us understand
mantle flow.

These models
can explain:

— Plate tectonic
behavior arising
from mantle flow

- Patterns of
present-day
mantle flow

The next challenge: Mantle flow for past times
- How stable is the mantle flow pattern?
- Can we relate past flow to geologic observations?



