Exploring the Ocean Floor: Seeing plate tectonics below the

waves

Pete Loader | Pane Perunovski | Dragos Tararu |

(EGU – Geoscience Education Field Officers - GEFO)

& Gina P. Correia (EGU Education Committee)

Geoscience Information for Teachers | Vienna 28th April 2025

Meetings | Publications | Outreach | www.equ.eu

EGU and the birth of the GEFO Programme

- Among the different STEM subjects, geosciences are probably the most neglected, both in school curricula and in the teaching practices of many countries.
- 2019 EGU launched a programme with the objective to promote geoscience education in Europe and beyond, creating a first group of teacher trainers - the Geoscience Education Field

Officers (GEFO)

1st GEFO's trainee (Vienna, 2019)

The expansion of the GEFO Programme

Barcelona, 2022

Geoscience Education Field Officers in the world

EGU & IUGS-COGE Network - Today

France

Greece

Italy

Spain

Turkey UK

Ghana India

Togo

Anett Kádár EDUCATION FIELD OFFICER HUNGARY ⊠ kdr.anett@gmail.com

EDUCATION FIELD OFFICER 🖂 candan26.ck@gmail.com

Carole Larose EDUCATION FIELD OFFICER FRANCE

☑ carole.larose76@gmail.com

Dragos Tataru EDUCATION FIELD OFFICER ROMANIA

☑ dragos@infp.ro

Giulia Realdon

ITALY

TURKEY

Fotios Danaskos EDUCATION FIELD OFFICER GREECE

☑ fdanas@yahoo.gr

EDUCATION FIELD OFFICER

☑ giuliarealdon@gmail.com

Pane Perunovski EDUCATION FIELD OFFICER NORTH MACEDONIA

Dane.perunovski@ahss.edu.mk

Goal:

providing professional development for school teachers and future teachers, from primary to secondary schools, in teaching the elements of geoscience appropriate for their curriculum, teaching through interactive workshops.

Peter Loader EDUCATION FIELD OFFICER UK ☑ peteloader@yahoo.co.uk

Sylke Hlawatsch EDUCATION FIELD OFFICER GERMANY

kontakt@sylke-hlawatsch.de

Xavier Juan EDUCATION FIELD OFFICER SPAIN

☑ xjuan03@gmail.com

EDUCATION FIELD OFFICER

🖂 marijotaj@gmail.com

PORTUGAL

https://www.equ.eu/education/field-officers/

GEFO offers face to face and online workshops at national and international level.

Workshops:

- Interactive and dynamic
- Hands-on
- Activities: practical, simple, requiring max. one teaching time
- Materials: inexpensive, easy to obtain/build and/or readily available in normal school classrooms and science labs.

Topics:

Plate tectonics | Rock cycle | Seismology | Time Scale and history of Earth | Volcanology | Hydrology and oceanography | Earth in space | Natural hazards | Geopark training courses

European Geosciences

Images: examples of workshop materials, Chris King, ESEU

 GEFO promote geosciences teaching by presenting GEFO programme in National and international Conferences and magazines.

Since 2019 - 2024

233 WS;

Il programma EGU Geoscience

Università di Camerino-Sezione di Geologia, Gruz

Le Geoscienze a Scuola. 2019, Parma, Italy

entro de Investigação da Terra e do Espaço da Uni

FCT

CITEUC

Giulia Realdon¹, Teresita Gravina²

³Earth Science Education, Keele Un

Le Geoscienze a Scuo

Meetings I Publications I Outreach I w

Gina P. Correia¹ & Hélder Pereira²

fade de Coimbre (CITEUC) EGU Education Co

Università di Parma

19 settembre 2019

- \approx 4500 participants;
- 9 papers + 23 abstracts;
- 46 conferences/webinars.

Coimbra, Portugal

Geoscience Education Field Officers: the activities repository

Earth Learning Idea Supporting Earth Science in Upper Secondary Education **Supporting Earth Science in**

The ELI team - Chris King, Elizabeth Devon, Peter Kennett, Pete Loader

investigative skills. ELIs, in English, are currently being published at one per month and have been downloaded more than 7.2 million times Translated into other languages, they have been used

as the basis for teacher training education workshops in many countries by a team of EGU Geoscience **Education Field Officers (GEFO)**

Climate change: the evidence

- EGU Geoscience Education Field Officers (GEFO) are a team of geoscience teachers and researchers who provide professional development to schoolteachers with elements of geoscience in their teaching curricula, through interactive hands-on workshops.
- The team is supported by the European Geosciences Union Education Committee and is active in thirteen countries around Europe.

Mining & the Green Revolution

the activities repository European Geosciences

TOPICS / TEACHING STRATEGIES

Adaptation to environment	Magnetism
Atmosphere	Mapwork
Carbon cycle	Maths in ELIs
Catastrophic processes	Metamorphic processes
Climate change - general	Minerals / Elements
Climate change - 'net zero' emissions target	Mining and the Green Revolution
Dating the Earth	Nitrogen cycle
Deep time - visualising deep time	Oceanography
Deformation - folding & faulting	Planets
Dinosaurs	Plate tectonics
Earth - seasons, day & night, orbital cycles	Power sources
Earth's Moon	Resources
Earth's structure	Rock cycle
Earthquakes	Rocks
Eclipses - solar and lunar	Sedimentary processes
Engineering & industrial geology	Sedimentary structures
Environment	Sink holes
Evolution of life	Soils
Fieldwork	Stratigraphy & sequences
Floods	<u>Tsunamis</u>
Forensic geology	Volcanoes
Fossils (mostly invertebrates)	Water cycle
Geomorphology	
Geophysics	CROSS-CATEGORY ELIS
Great scientists	Cross-curricular ELIs
Igneous processes	ELI Early years
Isostasy	UK Examinations
Landslides	Visual Impairment
Local hazards	Holiday geology

www.earthlearningidea.com E S EGL Earth Learning Idea Earth Science Innovative, Earth-related teaching ideas Education Teachers' Association ELI PAGES TRANSLATIONS RESOURCES CHILDREN'S FUN ELI IN THE WORLD **Teaching Resources ELI Translations** Topics & Teaching strategies Castellano Provecto Internacional de Investigación Teaching videos & workshops ages 5-11 Català Teaching videos & workshops ages 11-18 Projecte Internacional de Recerca Geography teaching videos & workshops ages 11-14 Norsk Mining and the Green Revolution, ages 14-18 Italiano ELI Virtual Rock Kit Czech Geoscience textbooks Deutsch Português brasileiro http://www.earthlearningidea.com Polski /4 Japanese

South Korean

Tamil

- > 450 available activities
- Explanatory videos
- Translated into different languages^l
- 2008 to 2025 👄 over 7.2 million downloads

Geoscience Education Field Officers: the activities repository

www.earthlearningidea.com Earth Learning Idea

Innovative, Earth-related teaching ideas

Earthlearningidea - https://www.earthlearningidea.com

Laser Quest 1 – below the waves Seeing evidence for plate tectonics beneath the oceans - using echo sounding

Ask students to zoom onto any part of the ocean floor using Google Earth. Here they will find bands or tracks of high-resolution data, criss-crossing the ocean floor, that pick out details of the ocean floor landscape (mountains, ridges, and valleys) whilst on either side of the tracks much of the ocean floor is much less clear. These bands represent the tracks followed by ships where high resolution echo sounding data of the ocean floor have been collected. However, only 25% of the ocean floor has been mapped in this way, with the rest having been estimated from satellite observations (Fig 1).

lantic ridge system showing higher resolution echo sounding mapping along ship tracks with satellite data interpretation between. (Google Earth: Data SIO, NOAA, U.S. Navy, NGA, GEBCOData LDEO-Columbia, NS,

This Earthlearningidea is an attempt to simulate the echo-sounding data collection method that allows scientists to map the ocean floor and interpret its plate tectonic formation. ('Laser Quest 2 - above the waves' in this series shows the satellite method - table on page 2).

How deep is the ocean? Echo sounding is a technique in which a type of sonar uses sound waves to determine the water depth (bathymetry) and therefore the shape of the ocean floor surface (topography). Sound waves are beamed from an instrument on a ship (a transducer) and the time taken for the waves to be reflected from the ocean floor (two-way time) is measured and converted into an ocean depth. This gives a resolution of about 100 metres in the deep water of the abyssal plains

The echo sounding method can be simulated in the classroom by using a D.I.Y. laser measure (or laser rangefinder) - a hand-held measuring device that records the distance between two points by sending a laser beam of light from the device to a target and measuring the time it takes for the reflection to return. This provides a practical demonstration of the principle involved (It also complements the Earthlearningidea 'Modelling seafloor mapping' referenced in the table on page 2)

- a ship across the ocean. Mark 1 cm intervals along the slit to assist
- with a systematic data collection survey. Using Lego[™] bricks (or equivalent), create an ocean floor within the box showing sufficient topographic variation. You may choose to represent any ocean floor features - trench. seamount, mid-ocean ridge, continental shelf abyssal plain - along the line of survey below

the ship. Explain the two-way measuring principle of the laser measuring meter. Move the meter across the top (ocean) surface of the box over the slit and vertically measure the depth to the 'ocean floor' every centimetre. (It is more engaging if the model is enclosed and students can't initially see the topography) (Fig 2).

Fig 2: A laser distance meter measuring tool in operation to rd the depth to a simulated ocean topography section with box side rem over to show the principle (Pete Loader)

Prepare a spreadsheet file (Excel or similar) to convert the raw data (in cm) collected to appropriate depths (km) - abyssal plain (~4km), ocean ridge (~2km), trench (>7km) -and use the graphing facilities (or graph paper) to draw the profile. (Fig 3).

Fig 3: A simulated topographic profile of data collected from the model above with annotation (Pete Loader

Ask students to annotate their graph and discuss the ocean floor features they can identify in terms of plate tectonics.

Shaken but not stirred? How earthquakes affect buildings

ELI activity: Shaken but not stirred? How earthquakes affect buildings

Video demonstrations

Shaken but not stirred? How earthquakes affect buildings ELI activity: Shaken but not stirred? How earthquakes affect buildings Earthlearningidea - https://www.earthlearningidea.com

The back up

Title: Laser Quest 1 - below the waves

Subtitle: Seeing evidence for plate tectonics beneath the oceans - using echo sounding.

Topic: A simulation to demonstrate the principle behind the echo sounding method of mapping the ocean floor topography.

Age range of pupils: 10 - 16+ years

Time needed to complete activity: 20 minutes

- Pupil learning outcomes: Pupils can: understand that different methods are used to measure the depth of the ocean floor (echo sounding and satellites);
 - understand the principle of the two-way time echo sounding method of ocean floor mapping;
- use an analogue model to map a simulated ocean floor topography; draw a 2D graph of the model ocean floor
- using spreadsheet software or by hand:
- verbally describe the characteristics of their depth profile to other pupils; relate the topographic profile identified to
- plate tectonic theory.

Context: This is the latest in a series of activities involving mapping the ocean floor that leads to the relationship between the topographic features and plate tectonic theory. The other activities are shown in the table on page 2.

Following up the activity: This activity is resigned to precede Earthlearningidea Lase Quest 2 - above the waves' and may be used alongside other associated Earthlearningidea activities listed in the table below

Underlying principles:

- Echo sounding is a technique in which a type of sonar uses sound waves to determine the water depth (bathymetry).
- Water depth is measured by the time it takes for a sound wave to travel from an echo sounding transducer, mounted on a ship, to the ocean floor and back: two-way time.
- By knowing two-way time and the speed of soundwayes in water, the depth of water beneath the ship can be calculated.
- Modern multi-beam swath bathymetry allows us to scan the ocean floor in strips and to reconstruct its topography at a resolution of just 100 metres

Thinking skill development: Measuring and

looking for patterns in the depth data is a construction activity, with possible cognitive conflict arising when unexpected values are calculated. Discussion among the class involves metacognition and relating the data and graph to plate tectonic models uses bridging skills.

Resource list:

- · laser distance meter measuring tool (simple battery-operated device)
- box/box lid
- suitable materials for constructing an ocean floor profile (e.g. Lego™)
- Spreadsheet software/graph paper.

Useful links: See the NOAA web pages on

seafloor mapping: https://oceanexplorer.noaa.gov/world-oceansday2015/mapping-the-seafloor-one-ping-atatime html

Source: Activity written by Pete Loader of the ELI Team for the EGU General Assembly 2025 GIFT Workshop

The Earthlearningidea ocean floor mapping activities		
Measuring the depths of seas and oceans: How is it done? A simple demonstration of how we measure sea floor depths and relief	https://www.earthlearningidea.com/PDF/350_Sea_floor_mapping1.pdf	
Modelling seafloor mapping: How to simulate an echo sounder study of seafloor topography	https://www.earthlearningidea.com/PDF/351_Sea_floor_mapping2.pdf	
Sounding the Pacific Ocean: An echo sounder traverse of the eastern Pacific	https://www.earthlearningidea.com/PDF/352_Sea_floor_mapping3.pdf	
Marie Tharp: 'The valley will be coming up soon'. Bruce Heezen: 'What valley?' A woman scientist in a man's world - what was it like?	https://www.earthlearningidea.com/PDF/353_Sea_floor_mapping4.pdf	
Laser Quest 1 – below the waves. Seeing evidence for plate tectonics beneath the oceans using echo sounding	https://www.earthlearningidea.com/PDF/454_Laser_quest1.pdf	
Laser Quest 2 – above the waves. Seeing evidence for plate tectonics above the oceans using satellites	https://www.earthlearningidea.com/PDF/456_Laser_quest2.pdf	

http://www.earthlearningidea.com

Geoscience Education Field Officers: the weekly activities support

Earth Learning Idea

Innovative, Earth-related teaching ideas

MONDAY, 24 MARCH 2025

How to model the symmetrical magnetic pattern of the rocks of the sea floor

The ELI today is 'Magnetic stripes; modelling the symmetrical magnetic pattern of the rocks of the sea floor.'

This ELI demonstrates the origin of the symmetrical magnetic anomalies which occur at oceanic spreading centres.

Many more activities can be found in our Plate tectonics section of Earth energy / processes category.

Labels: Earth energy / processes

0 comments

FREE SUBSCRIPTION BY EMAIL

Enter your Email

Subscribe me! Preview | Powered by FeedBlitz

FREE SUBSCRIPTION USING RSS

Subscribe in a reader

ABOUT EARTH LEARNING IDEA

ELI is publishing FREE Earth-related teaching ideas, designed to be practical resources for teachers and teacher-trainers all over the world. We publish new Earth Learning Ideas every two weeks. Some of these activities require the use of some basic school laboratory equipment and some include abstract ideas. We label these activities ELI+. Each activity is designed to create pupil participation for maximum learning.

All activities are free to download and most require minimal cost and equipment. Best of all, they are fun!

FIND OUT MORE

The Activities

www.earthlearningidea.com eli-team@earthlearningidea.com

BLOG ARCHIVE

▼ 2025 (11)

March (3)

ropean osciences ion

- a new Blog update every Monday
- a new activity posted every 2 weeks
- New videos uploaded all the time.

http://earthlearningidea.blogspot.com/

Exploring the Ocean Floor: Seeing plate tectonics below the waves

The workshop we are presenting today address:

'Laser Quest' (How to simulate echo-sounding and satellite altimetry to map ocean floor topography)

'Modelling seafloor mapping' (Addressing resolution and sampling challenges using 3D-printed models of the ocean floor)

'Human magnets!' (Modelling ancient and modern magnetic fields using your students)

'Mapping Magnetic Anomalies' (A simulation of an ocean magnetic survey)

'Remote sensing geophysics in the classroom' (Using classroom models of professional geophysical tools)

'Modelling plate tectonics in the classroom' (Classroom activities using 'working' plate tectonic models)

Laser Quest 1 – below the waves

Image: (Google Earth: Data SIO, NOAA, U.S. Navy, NGA, GEBCOData LDEO-Columbia, NS, NOAALandsat/Copernicus)

Laser Quest 1 - below the waves (using echo sounding)

ean ciences

https://www.earth learningidea.com /PDF/454_Laser _quest1.pdf

Laser Quest 2 – above the waves (using satellites)

two-way time

Undulating ocean

surface

https://www.e arthlearningid ea.com/PDF/ 456_Laser_q uest2.pdf

Laser Quest 1 & 2 – Exploring the ocean floor topography

https://www.earthlearningidea.com/ PDF/456_Laser_quest2.pdf

https://www.earthlearningidea.com/ PDF/454_Laser_quest1.pdf

Modelling seafloor mapping – Resolution and Sampling in Action

What do all these images have in common?

P Have you ever wondered how these stunning planetary and seafloor images are made?

Can we build our own models of the seafloor?

And can we design a method to test how accurate and precise our models are?

Modelling seafloor mapping – Resolution and Sampling in Action

Palaeomagnetic mapping of the ocean floor

Human Magnets

https://www.earthlearningid ea.com/PDF/209_Human_ magnets.pdf

Modelling remote sensing geophysics in the classroom

NASA Earth Observatory maps by Joshua Stevens, using data from <u>Sandwell, D. et al. (2014)</u>. Caption by Mike Carlowicz.

ELI_Remote_sensing

Real How can we visualize what lies beneath the ocean floor without direct access?

🗱 How accurate are these maps, and what data and techniques are used to create them?

Mountains and other seafloor features exert a gravitational pull on the water above and around them. This causes water to pile up in small but measurable bumps on the sea surface

Modelling remote sensing geophysics in the classroom

Can we use a simple mock gravimeter to demonstrate how geophysicists detect buried structures by measuring gravity variations?

A gravimeter works like a mass suspended on a spring balance. When this set up is above a large amount of dense material, the local gravitational effect pulls the mass down more than the average

- 'homemade' mock gravimeter, using a cardboard tube, something that looks like a mass, a spring (e.g. from an old ball-point pen) and string
- a Magnaprobe[™] or a magnetised needle on a thread
- a magnet
- sticky tape
- a specimen of dense dark-coloured rock
- sand in a tray/3D model / a map

When did the Poles flip? : Simulating the Geomagnetic Polarity Time Scale

https://www.earthlearningidea.com/PDF/455_GPTS.pdf

European

https://www.earthlearningidea.com/PDF/457_Magnetic_anomalies.pdf

Negative magnetic anomaly/ reversed field

Earth's geomagnetic polarity timescale Images: Pete Loader

Magnetic stripes

Modelling the symmetrical magnetic pattern of the rocks of the sea floor

Magnetic stripes

Modelling the symmetrical magnetic pattern of the rocks of the sea floor

https://www.earthlearningidea.com/PDF/81_Magnetic_stripes.pdf

Modelling spreading ocean floor by transform faults

European

https://www.earthlearningidea.com/PDF/84_Transform_faults.pdf

Modelling spreading ocean floor by transform faults

European

https://www.earthlearningidea.com/PDF/84_Transform_faults.pdf

Images: Pane Perunovski

Hotspots Modelling the movement of a plate across the globe

ences

Hotspots Modelling the movement of a plate across the globe

Hotspots Modelling the movement of a plate across the globe

https://www.earthlearningidea.com/PDF/208_Hotspots.pdf

A tribute to Professor Chris King (1949 – 2022)

GEFO run this workshop in the memory and honor of **Professor Chris King**.

He was a guide and an inspiration not only for us but for many generations of Geoscience teachers across the world.

Images: Pete .Loader

Bring EGU workshops EUC to your area!

- This and other workshops are also available free of charge (funded, up to a certain number, by EGU) in your area
- How?

Identify topics of interest and possible dates

- Write to the GEFO in your country (see next slide) to check availability
- Collect at least 10-15 registrations
- Provide a suitable classroom for the activity (projector, microphone, if needed, water, other depending on activity required)

Contacts to request EGU GEFO for teachers' workshops

Coun <mark>try</mark>	Name	Gee-mail Ciences
Franc <mark>e</mark>	Carole Larose	carole.larose76@gmail.com
Germany	Sylke Hlawatsch	kontakt@sylke-hlawatsch.de
Greece	Fotios Danaskos	fdanas@yahoo.gr
Hungary	Anett Kádár	kdr.anett@gmail.com
Italy	Giulia Realdon	giuliarealdon@gmail.com
North Macedonia	Pane Perunovski	pane.perunovski@ahss.edu.mk
Portugal	Mª João Picado	marijotaj@gmail.com
Romania	Dragos Tataru	dragos@infp.ro
Spain	Xavier Juan	xjuan03@gmail.com
Turkey	Candan Kafali	candan26.ck@gmail.com
United Kingdom	Pete Loader	peteloader@earthlearningidea.com

Don't forget to fill in the evaluation form

- Go to: <u>https://forms.gle/MqWP6wgMFZdqqKdU</u> <u>7</u>
- Or frame the OR code:

In memory of Chris King 1949 - 2022

Discovering the Ocean Floor: USING Earth Learning Idea

Pete Loader, Pane Perunovski and Dragos Tataru. (EGU Geoscience Education Field Officers)

Exploring the Ocean Floor: Seeing plate tectonics below the

waves

Pete Loader | Pane Perunovski | Dragos Tararu |

(EGU – Geoscience Education Field Officers - GEFO)

& Gina P. Correia (EGU Education Committee)

Geoscience Information for Teachers | Vienna 28th April 2025

Meetings | Publications | Outreach | www.equ.eu