Detecting the human fingerprint in the summer 2022 western–central European soil drought Earth System Dynamics DOI 10.5194/esd-15-131-2024 16 February 2024 The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world. Read more
Future water storage changes over the Mediterranean, Middle East, and North Africa in response to global warming and stratospheric aerosol intervention Earth System Dynamics DOI 10.5194/esd-15-91-2024 17 January 2024 Water storage (WS) plays a profound role in the lives of people in the Middle East and North Africa as well as Mediterranean climate “hot spots”. WS change by greenhouse gas (GHG) warming is simulated with and without stratospheric aerosol intervention (SAI). WS significantly increases in the Arabian Peninsula and decreases around the Mediterranean under GHG. While SAI partially ameliorates GHG impacts, projected WS increases in dry regions and decreases in wet areas relative to present climate. Read more
The Indonesian Throughflow circulation under solar geoengineering Earth System Dynamics DOI 10.5194/esd-14-1317-2023 20 December 2023 The Indonesia Throughflow is an important pathway connecting the Pacific and Indian oceans and is part of a wind-driven circulation that is expected to reduce under greenhouse gas forcing. Solar dimming and sulfate aerosol injection geoengineering may reverse this effect. But stratospheric sulfate aerosols affect winds more than simply ``shading the sun’‘; they cause a reduction in water transport similar to that we simulate for a scenario with unabated greenhouse gas emissions. Read more
Land cover and management effects on ecosystem resistance to drought stress Earth System Dynamics DOI 10.5194/esd-14-1211-2023 20 November 2023 Ecosystem resistance reflects their susceptibility during adverse conditions and can be changed by land management. We estimate ecosystem resistance to drought and temperature globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests or they are harvested. Old-growth trees tend to be more resistant in some forests and crops benefit from irrigation during drought periods. Read more
ESD Ideas: Arctic amplification’s contribution to breaches of the Paris Agreement Earth System Dynamics DOI 10.5194/esd-14-1165-2023 10 November 2023 The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later. ESD Ideas: Arctic amplification’s contribution to breaches of the Paris Agreement">Read more
ESD Ideas: Translating historical extreme weather events into a warmer world Earth System Dynamics DOI 10.5194/esd-14-1081-2023 20 October 2023 Adapting to climate change requires an understanding of how extreme weather events are changing. We propose a new approach to examine how the consequences of a particular weather pattern have been made worse by climate change, using an example of a severe windstorm that occurred in 1903. When this storm is translated into a warmer world, it produces higher wind speeds and increased rainfall, suggesting that this storm would be more damaging if it occurred today rather than 120 years ago. ESD Ideas: Translating historical extreme weather events into a warmer world">Read more
Advancing the estimation of future climate impacts within the United States Earth System Dynamics DOI 10.5194/esd-14-1015-2023 20 September 2023 This study utilizes a reduced-complexity model, Framework for Evaluating Damages and Impacts (FrEDI), to assess the impacts from climate change in the United States across 10 000 future probabilistic emission and socioeconomic projections. Climate-driven damages are largest for the health category, with the majority of damages in this category coming from the valuation estimates of premature mortality attributable to climate-driven changes in extreme temperature and air quality scenarios. Read more
Rate-induced tipping in natural and human systems Earth System Dynamics DOI 10.5194/esd-14-669-2023 28 June 2023 Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems. Read more
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change Earth System Dynamics DOI 10.5194/esd-14-81-2023 6 March 2023 Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation. Read more
Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021 Earth System Dynamics DOI 10.5194/esd-13-1689-2022 10 February 2023 In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 ℃ hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society. Read more