A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting Geoscientific Model Development DOI 10.5194/gmd-17-7569-2024 31 October 2024 By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland’s avalanche-prone regions. Read more
Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5 Earth System Dynamics DOI 10.5194/esd-15-1353-2024 30 October 2024 Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction. Read more
Air quality modeling intercomparison and multiscale ensemble chain for Latin America Geoscientific Model Development DOI 10.5194/gmd-17-7467-2024 29 October 2024 Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system. Read more
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution? Atmospheric Chemistry and Physics DOI 10.5194/acp-24-11981-2024 28 October 2024 This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift. Read more
Barchan swarm dynamics from a Two-Flank Agent-Based Model Earth Surface Dynamics DOI 10.5194/esurf-12-1205-2024 25 October 2024 Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties. Read more
Seafloor sediment characterization improves estimates of organic carbon standing stocks: an example from the Eastern Shore Islands, Nova Scotia, Canada Biogeosciences DOI 10.5194/bg-21-4569-2024 25 October 2024 Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were 12 times higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon. Read more
A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales Nonlinear Processes in Geophysics DOI 10.5194/npg-31-497-2024 23 October 2024 The shapes of clouds viewed from space reflect vertical and horizontal motions in the atmosphere. We theorize that, globally, cloud perimeter complexity is related to the dimension of turbulence also governed by horizontal and vertical motions. We find agreement between theory and observations from various satellites and a numerical model and, remarkably, that the theory applies globally using only basic planetary physical parameters from the smallest scales of turbulence to the planetary scale. Read more
Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea Nonlinear Processes in Geophysics DOI 10.5194/npg-31-477-2024 21 October 2024 With seismic data, we observed high-frequency internal waves (HIWs) with amplitudes of around 10 m. A shoaling thermocline and gentle slope suggest that HIWs result from fission. Remote sensing data support this. Strong shear caused Ri below 0.25 over 20–30 km, indicating instability. HIWs enhance mixing, averaging 10-4 m2s-1, revealing a new energy cascade from shoaling waves to turbulence, and enhancing our understanding of energy dissipation and mixing in the northern South China Sea. Read more
Bringing it all together: science priorities for improved understanding of Earth system change and to support international climate policy Earth System Dynamics DOI 10.5194/esd-15-1319-2024 18 October 2024 We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake. Read more
The Earthquake Risk Model of Switzerland, ERM-CH23 Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3561-2024 17 October 2024 The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population. Read more